Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T13:02:45.110Z Has data issue: false hasContentIssue false

Trace-element compositions of sapphire and ruby from the eastern Australian gemstone belt

Published online by Cambridge University Press:  26 January 2018

Jacqueline Wong
Affiliation:
School of Earth and Environmental Sciences, University of Queensland, St Lucia, QLD 4072, Australia
Charles Verdel
Affiliation:
School of Earth and Environmental Sciences, University of Queensland, St Lucia, QLD 4072, Australia
Charlotte M. Allen
Affiliation:
Institute for Future Environments, Queensland University of Technology, Brisbane, QLD 4001, Australia School of Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia

Abstract

Significant uncertainty surrounds the processes involved in the formation of basalt-hosted corundum, particularly the role that the mantle plays in corundum generation. Some previous studies have suggested that trace-element ratios (namely, Cr/Ga and Ga/Mg) are useful for distinguishing two types of corundum: ‘magmatic’ and ‘metamorphic’, designations that include mantle and crustal processes. However, recent studies, including this one, have discovered transitional groups between these end-members that are difficult to classify.We used laser ablation inductively coupled plasma mass spectrometry (LA–ICP–MS) to measure trace-element concentrations in sapphire and ruby crystals from eight alluvial deposits that span a significant length of the eastern Australian gemstone belt. Additionally, we collected LA–ICP–MS U–Pb and traceelement data from zircon megacrysts atWeldborough, Tasmania, which is also within the gemstone belt. Our sapphire and ruby results reveal a continuum in trace-element compositions, an observation that raises questions regarding previous classifications that ascribe corundum from basalt-hosted gemfields to either ‘magmatic’ or ‘metamorphic’ sources. The spatial association of basalt-related gemfields in eastern Australia with a long-lived convergent margin suggests a link between corundum formation and Al-enrichment of the mantle wedge during periods of subduction.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abduriyim, A. and Kitawaki, H. (2006) Applications of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to Gemology. Gems and Gemology, 42, 87108.CrossRefGoogle Scholar
Abduriyim, A., Sutherland, F.L. and Belousova, E.A. (2012) U-Pb age and origin of gem zircon from the New England sapphire fields, New South Wales, Australia. Australian Journal of Earth Sciences, 59, 10671081.CrossRefGoogle Scholar
Belousova, E., Griffin, W., O’Reilly, S.Y. and Fisher, N. (2002) Igneous zircon: trace element composition as an indicator of source rock type. Contributions to Mineralogy and Petrology, 143, 602622.CrossRefGoogle Scholar
Bindeman, I.N., Eiler, J.M., Yogodzinski, G.M., Tatsumi, Y., Stern, C.R., Grove, T.L., Portnyagin, M., Hoernle, K. and Danyushevsky, L.V. (2005) Oxygen isotope evidence for slab melting in modern and ancient subduction zones. Earth and Planetary Science Letters, 235, 480496.CrossRefGoogle Scholar
Birch, W.D. (2008) Gem corundum from the St. Arnaud district, Western Victoria, Australia. Australian Journal of Mineralogy, 14, 7378.Google Scholar
Birch, W.D. and Henry, D.A. (1997) Gem Minerals of Victoria, Melbourne. Mineralogical Society of Victoria: Special Publication No 4, p. 4041.Google Scholar
Birch, W.D., Fanning, M. and Magee, C. (2006) U-Pb dating of zircon and rutile from the gold-bearing White Hills Gravel , St Arnaud district, Victoria. ASEG Extended Abstracts, 2006, 14.CrossRefGoogle Scholar
Birch, W.D., Barron, L.M., Magee, C. and Sutherland, F. L. (2007) Gold- and diamond-bearing White Hills Gravel S. Arnaud district, Victoria: age and provenance based on U-Pb dating of zircon and rutile. Australian Journal of Earth Sciences, 54, 609628.CrossRefGoogle Scholar
Black, L.P., Kamo, S.L., Allen, C.M., Davis, D.W., Aleinikoff, J.N., Valley, J.W., Mundil, R., Campbell, I. H., Korsch, R.J.,Williams, I.S., et al. (2004) Improved 206Pb/238U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID–TIMS, ELA–ICP–MS and oxygen isotope documentation for a series of zircon standards. Chemical Geology, 205, 115140.CrossRefGoogle Scholar
Chualaowanich, T., Sutthirat, C., Pisutha-Arnond, V., Hauzenberger, C., Lo, C., Lee, T. and Charusiri, P. (2014) Geochemical characteristics and new eruption ages of ruby-related basalts from southeast Kenya. Journal of Earth Science, 25, 799821.CrossRefGoogle Scholar
Claiborne, L.L., Miller, C.F.,Walker, B.A., Wooden, J.L., Mazdab, F.K. and Bea, F. (2006) Tracking magmatic processes through Zr/Hf ratios in rocks and Hf and Ti zoning in zircons: An example from the Spirit Mountain batholith, Nevada. Mineralogical Magazine, 70, 517543.CrossRefGoogle Scholar
Coenraads, R.R. (1994) Evaluation of potential sapphire source rocks within the catchments of Kings Plains Creek and Swan Brook, near Inverell, New South Wales. Records of the Australian Museum, 46, 524.CrossRefGoogle Scholar
Coenraads, R.R., Sutherland, F.L. and Kinny, P.D. (1990) The origin of sapphires: U-Pb dating of zircon inclusions sheds new light. Mineralogical Magazine, 54, Part 1, 113122.CrossRefGoogle Scholar
Cohen, B.E. (2007) High resolution 40Ar/39Ar geochronology of intraplate volcanism in Eastern Australia. PhD Thesis, The University of Queensland.Google Scholar
Compston, W., Williams, I.S. and Meyer, C. (1984) U-Pb geochronology of zircons from lunar breccia 73217 using a sensitive high mass-resolution ion microprobe. Journal of Geophysical Research: Solid Earth, 89, S02, B525–B534.CrossRefGoogle Scholar
Criss, R.E. (1999) Principles of Stable Isotope Distribution. Oxford University Press.CrossRefGoogle Scholar
Davies, D.R. and Rawlinson, N. (2014) On the origin of recent intraplate volcanism in Australia. Geology, 42, 10311034.CrossRefGoogle Scholar
Davies, D.R., Rawlinson, N., Iaffaldano, G. and Campbell, I.H. (2015) Lithospheric controls on magma composition along Earth/'s longest continental hotspot track. Nature, 525, 511514.CrossRefGoogle Scholar
Dupuy, C., Liotard, J.M. and Dostal, J. (1992) Zr/Hf fractionation in intraplate basaltic rocks: Carbonate metasomatism in the mantle source. Geochimica et Cosmochimica Acta, 56, 24172423.CrossRefGoogle Scholar
Ewart, A., Chappell, B.W. and Menzies, M.A. (1988) An overview of the geochemical and isotopic characteristics of the Eastern Australian Cainozoic Volcanic provinces. Journal of Petrology, Special Volume, 225273.CrossRefGoogle Scholar
Fergusson, C.L. and Henderson, R.A. (2015) Early Palaeozoic continental growth in the Tasmanides of northeast Gondwana and its implications for Rodinia assembly and rifting. Gondwana Research, 28(3) 933953.CrossRefGoogle Scholar
Fishwick, S., Heintz, M., Kennett, B.L.N. and Reading, A.M. (2008) Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. Tectonics, 27, TC4009.CrossRefGoogle Scholar
Fritsch, E. and Rossman, G.R. (1987) An update on color in gems. Part 1: Introduction and colors caused by dispersed metal ions. Gems & Gemology, 23, 126139.CrossRefGoogle Scholar
Fritsch, E. and Rossman, G.R. (1988) An update on color in gems. Part 2: Colors involving multiple atoms and color centers. Gems & Gemology, 24, 314.CrossRefGoogle Scholar
Fu, B., Page, F.Z., Cavosie, A.J., Fournelle, J., Kita, N.T., Lackey, J.S.,Wilde, S.A. and Valley, J.W. (2008) Ti-inzircon thermometry: applications and limitations. Contributions to Mineralogy and Petrology, 156, 197215.CrossRefGoogle Scholar
Gaina, C., Müller, D.R., Royer, J.-Y. and Stock, J. (1998) The tectonic history of the Tasman Sea: A puzzle with 13 pieces. Journal of Geophysical Research, 103, b6, 1241312433.CrossRefGoogle Scholar
Garnier, V., Ohnenstetter, D., Giuliani, G., Blanc, P. and Schwarz, D. (2002) Trace-element contents and cathodoluminescence of “trapiche” rubies from Mong Hsu, Myanmar (Burma): geological significance. Mineralogy and Petrology, 76, 179193.CrossRefGoogle Scholar
Garnier, V., Ohnenstetter, D., Giuliani, G., Fallick, A.E., Trong, T.P., Quang, V.H., Van, L.P. and Schwarz, D. (2005) Basalt petrology, zircon ages and sapphire genesis from Dak Nong, southern Vietnam. Mineralogical Magazine, 69, 2138.CrossRefGoogle Scholar
Giuliani, G., Fallick, A.E., Garnier, V., France-Lanord, C., Ohnenstetter, D. and Schwarz, D. (2005) Oxygen isotope composition as a tracer for the origins of rubies and sapphires. Geology, 33, 249252.CrossRefGoogle Scholar
Giuliani, G., Fallick, A., Rakotondrazafy, M., Ohnenstetter, D., Andriamamonjy, A., Ralantoarison, T., Rakotosamizanany, S., Razanatseheno, M., Offant, Y., Garnier, V. et al. (2007) Oxygen isotope systematics of gem corundum deposits in Madagascar: relevance for their geological origin. Mineralium Deposita, 42, 251270.CrossRefGoogle Scholar
Giuliani, G., Fallick, A.E., Ohnenstetter, D. and Pegere, G. (2009) Oxygen isotopes composition of sapphires from the French Massif Central: implications for the origin of gem corundum in basaltic fields. Mineralium Deposita, 44, 221231.CrossRefGoogle Scholar
Giuliani, G., Ohnenstetter, D., Fallick, A.E., Groat, L.A. and Fagan, A.J. (2014) The geology and genesis of gem corundum deposits. Pp. 29112 in: Geology of Gem Deposits (L.A. Groat, editor). Volume 44, Mineralogical Association of Canada (MAC), Canada.Google Scholar
Giuliani, G., Pivin, M., Fallick, A.E., Ohnenstetter, D., Song, Y. and Demaiffe, D. (2015) Geochemical and oxygen isotope signatures of mantle corundum megacrysts from the Mbuji-Mayi kimberlite, Democratic Republic of Congo, and the Changle alkali basalt, China. Comptes Rendus Geoscience, 347, 2434.CrossRefGoogle Scholar
Glen, R.A. (2005) The Tasmanides of eastern Australia. Pp. 2396 in: Terrane Processes at the Margins of Gondwana (A.P.M. Vaughan, P.T. Leat and R.J. Pankhurst, editors). Geological Society, London, Special Publications, v. 246.Google Scholar
Graham, I., Sutherland, L., Zaw, K., Nechaev, V. and Khanchuk, A. (2008) Advances in our understanding of the gem corundum deposits of the West Pacific continental margins intraplate basaltic fields. Ore Geology Reviews, 34, 200215.CrossRefGoogle Scholar
Guo, J., O’Reilly, S.Y. and Griffin, W.L. (1996) Corundum from basaltic terrains: a mineral inclusion approach to the enigma. Contributions to Mineralogy and Petrology, 122, 368386.CrossRefGoogle Scholar
Harlow, G. and Bender, W. (2013) A study of ruby (corundum) compositions from the Mogok Belt, Myanmar: Searching for chemical fingerprints. American Mineralogist, 98, 11201132.CrossRefGoogle Scholar
Henley, K. and Webb, A. (1990) Radiometric dating on various granites and Newer Volcanics basalts. Geological Survey of Victoria Unpublished Report, v. 27.Google Scholar
Hinton, R.W. and Upton, B.G.J. (1991) The chemistry of zircon: Variations within and between large crystals from syenite and alkali basalt xenoliths. Geochimica et Cosmochimica Acta, 55, 32873302.CrossRefGoogle Scholar
Hoskin, P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69, 637648.CrossRefGoogle Scholar
Izokh, A.E., Smirnov, S.Z., Egorova, V.V., Anh, T.T., Kovyazin, S.V., Phuong, N.T. and Kalinina, V.V. (2010) The conditions of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russian Geology and Geophysics, 51, 719733.CrossRefGoogle Scholar
Johnson, R.W., Knutson, J. and Taylor, S.R. (1989) Intraplate Volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge, UK.Google Scholar
Khamloet, P., Pisutha-Arnond, V. and Sutthirat, C. (2014) Mineral inclusions in sapphire from the basalt-related deposit in Bo Phloi, Kanchanaburi, western Thailand: indication of their genesis. Russian Geology and Geophysics, 55, 10871102.CrossRefGoogle Scholar
Kogarko, L.N. (2016a) Fractionation of zirconium and hafnium during processes of mantle metasomatism. Doklady Earth Sciences, 468, 598601.Google Scholar
Kogarko, L.N. (2016b) Zirconium and hafnium fractionation in differentiation of alkali carbonatite magmatic systems. Geology of Ore Deposits, 58, 173181.Google Scholar
Levinson, A.A. and Cook, F.A. (1994) Gem corundum in Alkali basalt: origin and occurrence. Gems and Gemology, v. Winter, 253262.CrossRefGoogle Scholar
Limtrakun, P., Zaw, K., Ryan, C.G. and Mernagh, T.P. (2001) Formation of the Denchai gem sapphires, northern Thailand: evidence from mineral chemistry and fluid/melt inclusion characteristics. Mineralogical Magazine, 65, 725735.CrossRefGoogle Scholar
Lishmund, S.R. and Oakes, G.M. (1989) Gemstones. Pp. 152155 in: Intraplate Volcanism in Eastern Australia and New Zealand (R.W. Johnson, J. Knutson and S.R. Taylor, editors). Cambridge University Press, Cambridge.Google Scholar
Longerich, H.P., Jackson, S.E. and Gunther, D. (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899904.CrossRefGoogle Scholar
Ludwig, K.R. (2008) User's Manual for ISOPLOT v3.70 A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication No. 4, p. 76.Google Scholar
MacNevin, A.A. (1972) Sapphires in the New England district, New South Wales. Records of the Geological Survey, NSW, 14, 1935.Google Scholar
McGee, B.M. (2005) Characteristics and Origin of the Weldborough Sapphire, N. Tasmania. BSc Thesis, University of Tasmania, Australia.Google Scholar
Moon, A.R. and Phillips, M.R. (1984) An electron microscopy study of exsolved phases in natural black Australian sapphire. Micron and Microscopica Acta, 15, 143146.CrossRefGoogle Scholar
Nassau, K. (2001) The Physics and Chemistry of Color: The Fifteen Causes of Color. Wiley, 504 p.Google Scholar
O’Reilly, S.Y. and Zhang, M. (1995) Geochemical characteristics of lava-field basalts from eastern Australia and inferred sources: connections with the subcontinental lithospheric mantle? Contributions to Mineralogy and Petrology, 121, 148170.Google Scholar
Palke, A.C., Renfro, N.D. and Berg, R.B. (2016) Origin of sapphires from a lamprophyre dike at Yogo Gulch, Montana U.A. Clues from their melt inclusions. Lithos, 260, 339344.CrossRefGoogle Scholar
Paton, C., Hellstrom, J., Paul, B.,Woodhead, J. and Hergt, J. (2011) Iolite: Freeware for the visualisation and processing of mass spectrometric data. Journal of Analytical Atomic Spectrometry, 26, 25082518.CrossRefGoogle Scholar
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M. P., Jackson, S.E., Neal, C.R. and Chenery, S.P. (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandards Newsletter, 21, 115144.CrossRefGoogle Scholar
Peucat, J.J., Ruffault, P., Fritsch, E., Bouhnik-Le Coz, M., Simonet, C. and Lasnier, B. (2007) Ga/Mg ratio as a new geochemical tool to differentiate magmatic from metamorphic blue sapphires. Lithos, 98, 261274.CrossRefGoogle Scholar
Pham, V.L., Quang Vinh, H., Garnier, V., Giuliani, G., Ohnenstetter, D., Lhomme, T., Schwarz, D., Fallick, A., Dubessy, J. and Phan, T.T. (2004) Gem corundum deposits in Vietnam. Journal of Gemmology, 29, 129147.Google Scholar
Pisutha-Arnond, V., Hager, T., Atichat, W. and Wathanakul, P. (2006) The role of Be M, Fe, and Ti in causing colour in corundum. Journal of Gemmology, 30, 131143.CrossRefGoogle Scholar
Price, R.C., Nicholls, I.A. and Day, A. (2014) Lithospheric influences on magma compositions of late Mesozoic and Cenozoic intraplate basalts (the Older Volcanics) of Victoria, south-eastern Australia. Lithos, 206207, 179200.CrossRefGoogle Scholar
Rakotosamizanany, S., Giuliani, G., Ohnenstetter, D., Rakotondrazafy, A.F.M., Fallick, A.E., Paquette, J.-L. and Tiepolo, M. (2014) Chemical and oxygen isotopic compositions, age and origin of gem corundums in Madagascar alkali basalts. Journal of African Earth Sciences, 94, 156170.CrossRefGoogle Scholar
Raymond, O.L., Liu, S., Gallagher, R., Zhang, W. and Highet, L.M. (2012) Surface Geology of Australia 1:1 million scale dataset 2012 edition. Commonwealth of Australia (Geoscience Australia), scale 1:1,000,000.Google Scholar
Robertson, A.D.C. and Sutherland, F.L. (1992) Possible origins and ages for sapphire and diamond from the Central Queensland gem fields. Records of the Australian Museum, 15, 4554.CrossRefGoogle Scholar
Saminpanya, S. and Sutherland, F.L. (2011) Different origins of Thai area sapphire and ruby, derived from mineral inclusions and co-existing minerals. European Journal of Mineralogy, 23, 683694.CrossRefGoogle Scholar
Saminpanya, S., Manning, D.A.C., Droop, G.T.R. and Henderson, C.M.B. (2003) Trace elements in Thai gem corundums. Journal of Gemmology, 28, 392398.Google Scholar
Schaltegger, U. (2007) Hydrothermal Zircon. Elements, 3, 5179.CrossRefGoogle Scholar
Sharp, Z. (2007) Principles of Stable Isotope Geochemistry. Pearson Education, Upper Saddle River, NJ, U.A.Google Scholar
Simonet, C., Paquette, J.L., Pin, C., Lasnier, B. and Fritsch, E. (2004) The Dusi (Garba Tula) sapphire deposit, Central Kenya – a unique Pan-African corundum-bearing monzonite. Journal of African Earth Sciences, 38, 401410.CrossRefGoogle Scholar
Simonet, C., Fritsch, E. and Lasnier, B. (2008) A classification of gem corundum deposits aimed towards gem exploration. Ore Geology Reviews, 34, 127133.CrossRefGoogle Scholar
Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N. et al. (2008) Plešovice zircon – A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 135.CrossRefGoogle Scholar
Stähle, V., Frenzel, G., Kober, B., Michard, A., Puchelt, H. and Schneider,W. (1990) Zircon syenite pegmatites in the Finero peridotite (Ivrea zone): evidence for a syenite from a mantle source. Earth and Planetary Science Letters, 101, 196205.CrossRefGoogle Scholar
Stephenson, P. (1976) Sapphire and zircon in some basaltic rocks from Queensland, Australia. Pp. 602603 in: Abstracts of the 25th International Geological Congress, Sydney.Google Scholar
Stephenson, P., Burch-Johnston, A., Stanton, D. and Whitehead, P. (1998) Three long lava flows in north Queensland. Journal of Geophysical Research: Solid Earth, 103, B11, 2735927370.CrossRefGoogle Scholar
Stern, R.J., Tsujimori, T., Harlow, G. and Groat, L.A. (2013) Plate tectonic gemstones. Geology, 41, 723726.CrossRefGoogle Scholar
Sutherland, F.L. (1978) Mesozoic-Cainozoic volcanism of Australia. Tectonophysics, 48, 413427.CrossRefGoogle Scholar
Sutherland, F.L. (1996) Alkaline rocks and gemstones, Australia: A review and synthesis. Australian Journal of Earth Sciences, 43, 323343.CrossRefGoogle Scholar
Sutherland, F.L. and Abduriyim, A. (2009) Geographic typing of gem corundum; a test case from Australia. Journal of Gemmology, 31, 203210.CrossRefGoogle Scholar
Sutherland, F.L. and Coenraads, R.R. (1996) An unusual ruby-sapphirine-spinel assemblage from the Tertiary Barrington volcanic province, New South Wales, Australia. Mineralogical Magazine, 60, 623638.CrossRefGoogle Scholar
Sutherland, F.L. and Fanning, C.M. (2001) Gem-bearing basaltic volcanism, Barrington, New South Wales: Cenozoic evolution, based on basalt K–Ar ages and zircon fission track and U–Pb isotope dating. Australian Journal of Earth Sciences, 48, 221237.CrossRefGoogle Scholar
Sutherland, F.L. and Wellman, P. (1986) Potassium-argon ages of tertiary volcanics rocks, Tasmania. Papers and Proceedings of the Royal Society of Tasmania, 120, 7786.CrossRefGoogle Scholar
Sutherland, F., Pogson, R., Hollis, J. and Flood, P. (1993) Growth of the Central New England Basaltic Gemfields, New South Wales, based on Zircon Fission Track Dating. Department of Geology and Geophysics, University of New England, Armidale, p. 483491.Google Scholar
Sutherland, F.L., Hoskin, P.W.O., Fanning, C.M. and Coenraads, R.R. (1998a) Models of corundum origin from alkali basaltic terrains; a reappraisal. Contributions to Mineralogy and Petrology, 133, 356372.CrossRefGoogle Scholar
Sutherland, F.L., Schwarz, D., Jobbins, E.A., Coenraads, R.R. andWebb, G. (1998b) Distinctive gem corundum suites from discrete basalt fields; a comparative study of Barrington, Australia, and West Pailin, Cambodia, gemfields. Journal of Gemmology, 26, 6585.Google Scholar
Sutherland, F.L., Graham, I.T., Pogson, R.E., Schwarz, D., Webb, G.B., Coenraads, R.R., Fanning, C.M., Hollis, J.D. and Allen, T.C. (2002) Tumbarumba basaltic gem field, New South Wales. In relation to sapphire-ruby deposits of Eastern Australia. Records of the Australian Museum, 54, 215248.CrossRefGoogle Scholar
Sutherland, F.L., Coenraads, R.R., Schwarz, D., Raynor, L.R., Barron, B.J. and Webb, G.B. (2003) Al-rich diopside in alluvial ruby and corundum-bearing xenoliths, Australian and SE Asian basalt fields. Mineralogical Magazine, 67, 717732.CrossRefGoogle Scholar
Sutherland, F.L., Duroc-Danner, J.M. and Meffre, S. (2008) Age and origin of gem corundum and zircon megacrysts from the Mercaderes-Rio Mayo area, south-west Colombia, South America. Ore Geology Reviews, 34, 155168.CrossRefGoogle Scholar
Sutherland, F.L., Zaw, K., Meffre, S., Giuliani, G., Fallick, A.E., Graham, I.T. and Webb, G.B. (2009) Gemcorundum megacrysts from east Australian basalt fields: Trace elements, oxygen isotopes and origins. Australian Journal of Earth Sciences, 56, 10031022.CrossRefGoogle Scholar
Sutherland, F.L., Graham, I.T., Meffre, S., Zwingmann, H. and Pogson, R.E. (2012) Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes. Australian Journal of Earth Sciences, 59, 9831005.CrossRefGoogle Scholar
Sutherland, F.L., Graham, I.T., Hollis, J.D., Meffre, S., Zwingmann, H., Jourdan, F. and Pogson, R.E. (2014) Multiple felsic events within post-10 Ma volcanism, Southeast Australia: inputs in appraising proposed magmatic models. Australian Journal of Earth Sciences, 61, 241267.CrossRefGoogle Scholar
Sutherland, F.L., Coenraads, R.R., Abduriyim, A., Meffre, S., Hoskin, P.W.O., Giuliani, G., Beattie, R., Wuhrer, R. and Sutherland, G.B. (2015) Corundum (sapphire) and zircon relationships, Lava Plains gem fields N. Australia: integrated mineralogy, geochemistry, age determination, genesis and geographical typing. Mineralogical Magazine, 79, 545581.CrossRefGoogle Scholar
Sutherland, L., Graham, I., Yaxley, G., Armstrong, R., Giuliani, G., Hoskin, P., Nechaev, V. and Woodhead, J. (2016) Major zircon megacryst suites of the Indo- Pacific lithospheric margin (ZIP) and their petrogenetic and regional implications. Mineralogy and Petrology, 109, 122.Google Scholar
Upton, B.G.J. (1999) Megacrysts and associated Xenoliths: evidence for migration of geochemically enriched melts in the upper mantle beneath Scotland. Journal of Petrology, 40, 935955.CrossRefGoogle Scholar
Vasconcelos, P.M., Knesel, K.M., Cohen, B.E. and Heim, J.A. (2008) Geochronology of the Australian Cenozoic: a history of tectonic and igneous activity, weathering, erosion, and sedimentation. Australian Journal of Earth Sciences, 55, 865914.CrossRefGoogle Scholar
Vysotsky, S.V., Yakovenko, V.V., Ignat’ev, A.V. and Karabtsov, A.A. (2009) The oxygen isotopic composition as an indicator of the genesis of “Basaltic” corundum. Russian Journal of Pacific Geology, 3, 6468.CrossRefGoogle Scholar
Watson, E.B., Wark, D.A. and Thomas, J.B. (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413433.CrossRefGoogle Scholar
Wellman, P. and McDougall, I. (1974) Cainozoic igneous activity in Eastern Australia. Tectonophysics, 23, 4965.CrossRefGoogle Scholar
Wetherill, G.W. (1956) Discordant uranium-lead ages, I. Eos, Transactions American Geophysical Union, 37, 320326.CrossRefGoogle Scholar
Yui, T.-F., Zaw, K. and Limtrakun, P. (2003) Oxygen isotope composition of the Denchai sapphire, Thailand: a clue to its enigmatic origin. Lithos, 67, 153161.CrossRefGoogle Scholar
Yui, T.-F., Wu, C.-M., Limtrakun, P., Sricharn, W. and Boonsoong, A. (2006) Oxygen isotope studies on placer sapphire and ruby in the Chanthaburi-Trat alkali basaltic gemfield, Thailand. Lithos, 86, 197211.CrossRefGoogle Scholar
Zaw, K., Sutherland, F.L., Dellapasqua, F., Ryan, C.G., Yui, T.-F., Mernagh, T.P. and Duncan, D. (2006) Contrasts in gem corundum characteristics, eastern Australian basaltic fields: trace elements, fluid/melt inclusions and oxygen isotopes. Mineralogical Magazine, 70, 669687.CrossRefGoogle Scholar
Zaw, K., Sutherland, L., Yui, T.-F., Meffre, S. and Thu, K. (2015) Vanadium-rich ruby and sapphire within Mogok Gemfield, Myanmar: implications for gem color and genesis. Mineralium Deposita, 50, 2539.CrossRefGoogle Scholar
Zhang, M., Stephenson, P.J., O’Reilly, S.Y., McCulloch, M.T. and Norman, M. (2001) Petrogenesis and Geodynamic implications of late Cenozoic basalts in North Queensland, Australia: Trace-element and Sr– Nd–Pb isotope evidence. Journal of Petrology, 42, 685719.CrossRefGoogle Scholar