Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T04:54:59.009Z Has data issue: false hasContentIssue false

Synthetic norsethite, BaMg(CO3)2: revised crystal structure, thermal behaviour and displacive phase transition

Published online by Cambridge University Press:  05 July 2018

H. Effenberger*
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
T. Pippinger
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
E. Libowitzky
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
C. L. Lengauer
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
R. Miletich
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstrasse 14, 1090 Vienna, Austria
*

Abstract

The crystal structure of synthetic BaMg(CO3)2 whose mineral name is norsethite was re-investigated by single-crystal X-ray diffraction. Complementary in situ high- and low-temperature studies by means of vibrational spectroscopy (Raman, IR), powder X-ray diffraction techniques and thermal analyses were performed. Diffraction images (298 K) revealed weak superstructure reflections caused by the displacement of the O atoms in the earlier considered Rm structure model (a = 5.0212(9), cnew = 2 cold = 33.581(6) Å , Rc, Z = 6, R1 = 0.011, sinθ/λ < 0.99 Å –1). Thermal analyses reveal decarbonatization in two decomposition steps above 750 K, and the heat-flow curves (difference scanning calorimetry) give clear evidence of a weak and reversible endothermal change at 343±1 K. This agrees with a discontinuity in the IR and single-crystal Raman spectra. The changing trend of the c/a ratio supports this discontinuity indicating a temperature-induced structural transition in the range between 343 and 373 K. As the change of the unit-cell volume is almost linear, the character of the transition is apparently second order and matches the mechanism of a subtle displacement of the oxygen atom position. The apparent instability of the Rc structure is also evidenced by the remarkably larger anisotropic displacement of the oxygen atom.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdel Khalek, E.K., Mohamed, E.A., Salem, S.M., Ebrahim, F.M. and Kashif, I. (2012) Study of glassnanocomposite and glass-ceramic containing ferroelectric phase. Materials Chemistry and Physics, 133, 6977.CrossRefGoogle Scholar
Åberg, G. and Charalampides, G. (1988) Evolution of the mineral deposits from Långban, Sweden, as recorded from strontium isotope data. Geologiska Föreningens i Stockholm Förhandlingar, 110, 329334.CrossRefGoogle Scholar
Antao, S.M. and Hassan, I. (2007) BaCO3: hightemperature crystal structures and the Pmcn ? R3m phase transition at 811ºC. Physics and Chemistry of Minerals, 34, 573580.CrossRefGoogle Scholar
Antao, S.M., Mulder, W.H., Hassan, I., Crichton, W.A. and Parise, J.B. (2004) Cation disorder in dolomite, CaMg(CO3)2 and its influence on the aragonite + magnesite - dolomite reaction boundary. American Mineralogist, 89, 11421147.CrossRefGoogle Scholar
Beran, A. and Zemann, J. (1977) Refinement and comparison of the crystal structures of a dolomite and an Fe-rich ankerite. Tschermaks Mineralogische und Petrographische Mitteilungen, 24, 279286.CrossRefGoogle Scholar
Böttcher, M.E., Gehlken, P.-L. and Reutel, C. (1996) The vibrational spectra of PbMg(CO3)2 . Neues Jahrbuch für Mineralogie, Monatshefte, 1996, 241250.Google Scholar
Böttcher, M.E., Gehlken, P.-L., Skogby, H. and Reutel, C. (1997) The vibrational spectra of BaMg(CO3)2 (norsethite). Mineralogical Magazine, 61, 249256.CrossRefGoogle Scholar
Böttcher, M.E., Effenberger, H.S., Gehlken, P.-L., Grathoff, G.H., Schmidt, B.C., Geprägs, P., Bahlo, R., Dellwig, O., Leipe, T., Winde, V., Deutschmann, A., Stark, A., Gallego-Torres, D. and Martinez-Ruiz, F. (2012) BaMn[CO3]2 – a previously unrecognized double carbonate in low-temperature environments: Structural, spectroscopic, and textural tools for future identification. Chemie der Erde, 72, 8589.CrossRefGoogle Scholar
Bruker AXS (2009) TOPAS V4.2.2. General profile and structure analysis software for powder diffraction data. Bruker AXS GmbH, Karlsruhe, Germany.Google Scholar
Chang, L.L.Y. (1964) Synthesis of MBa(CO3)2 compounds. American Mineralogist, 49, 11421143.Google Scholar
Cooper, A.F. (1996) Nb-rich baoite in carbonatites and fenites at Haast River, New Zealand. Mineralogical Magazine, 60, 473482.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C., Novak, M. and Taylor, M.C. (1994) The crystal structure of tusionite, Mn(2+)Sn(4+)(BO3)2, a dolomite-structure borate. The Canadian Mineralogist, 32, 903907.Google Scholar
Costanzo, A., Moore, K.R., Wall, F. and Feely, M. (2006) Fluid inclusions in apatite from Jacupiranga calcite carbonatites: evidence for a fluid-stratified carbonatite magma chamber. Lithos, 91, 208228.CrossRefGoogle Scholar
Drits, V.A., McCarty, D.K., Sakharov, B. and Milliken, K.L. (2005) New insight into structural and compositional variability in some ancient excess- Ca dolomite. The Canadian Mineralogist, 43, 12551290.CrossRefGoogle Scholar
Dowty, E. (1997) ATOMS 3.2. A computer program for displaying atomic structures. Kingsport, Tenessee USA.Google Scholar
Edge, R.A. and Taylor, F.W. (1971) Crystal structure of thaumasite, [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Crystallographica, B27, 594601.CrossRefGoogle Scholar
Effenberger, H. and Langhof, H. (1984) On the planarity of the CO3 group in buetschliite, dipotassium calcium dicarbonate, K2Ca(CO3)2 . Acta Crystallographica, C40, 12991300.Google Scholar
Effenberger, H. and Zemann, J. (1985) Single crystal X-ray investigation of norsethite, BaMg(CO3)2: one more mineral with an aplanar carbonate group. Zeitschrift für Kristallographie, 171, 275280.Google Scholar
Effenberger, H. and Zemann, J. (1986) The detailed crystal structure of nordenskiöldine, CaSn(BO3)2 . Neues Jahrbuch für Mineralogie, Monatshefte, 1986, 111114.Google Scholar
Effenberger, H., Mereiter, K. and Zemann, J. (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithsonite, and dolomite, with the discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie, 156, 233243.Google Scholar
Effenberger, H., Kirfel, A. and Will, G. (1983a) Untersuchungen zur Elektronendichteverteilung im Dolomit CaMg(CO3)2 . Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 151164.CrossRefGoogle Scholar
Effenberger, H., Kirfel, A., Will, G. and Zobetz, E. (1983b) A further refinement of the crystal structure of thaumasite, Ca3Si(OH)6CO3SO4·12H2O. Neues Jahrbuch für Mineralogie, Monatshefte, 6068.Google Scholar
Farkas, L., Bolzenius, B.H., Schaefer, W. and Will, G. (1988) The crystal structure of kutnohorite CaMn(CO3)2. Neues Jahrbuch für Mineralogie, Monatshefte, 539546.Google Scholar
Fleet, M.E. (1976) Distortion parameters for coordination polyhedra. Mineralogical Magazine, 40, 531533.CrossRefGoogle Scholar
Garavelli, C.G., Vurro, F. and Fioravanti, G.C. (1982) Minrecordite, a new mineral from Tsumeb. Mineralogical Record, 13, 131136.Google Scholar
Gatta, G.D., McIntyre, G.J., Swanson, J.G. and Jacobsen, S.D. (2012) Minerals in cement chemistry: A singlecrystal neutron diffraction and Raman spectroscopic study of thaumasite, Ca3Si(OH)6(CO3)(SO4)·12H2O. American Mineralogist, 97, 10601069.CrossRefGoogle Scholar
Hertweck, B., Libowitzky, E. and Giester, G. (2001) The crystal structures of the low-temperature phases of leonite-type compounds, K2Me(SO4)2·4H2O (Me2+ = Mg, Mn, Fe). American Mineralogist, 86, 12821292.CrossRefGoogle Scholar
Hirowatari, F. and Fukuoka, M. (1988) Some problems of the studies on the manganese minerals in Japan. Journal of the Mineralogical Society of Japan, 18, 347365.CrossRefGoogle Scholar
Hoppe, R. (1970) Die Koordinationszahl – ein "anorganisches Chamäleon". Angewandte Chemie, 82, 716.CrossRefGoogle Scholar
Jacobsen, S.D., Smyth, J.R. and Swope, R.J. (2003) Thermal expansion of hydrated six-coordinate silicon in thaumasite, Ca3Si(OH)6CO3SO4·12H2O. Physics and Chemistry of Minerals, 30, 321329.CrossRefGoogle Scholar
Kalacheva, L.V., Yamnova, N.A., Pushcharovskii, D.Y. and Konovalenko, S.I. (1992) Crystal structure of a new natural tusionite borate MnSn(BO3)2 . Kristallografiya, 37, 15571558.Google Scholar
Kawano, T. and Yamane, H. (2010) Synthesis, crystal structure and luminescent properties of titanium(IV)- doped calcium borostannates, CaSn1-xTix(BO3)2 . Journal of Alloys and Compounds, 490, 443447.CrossRefGoogle Scholar
Libowitzky, E. and Armbruster, T. (1995) Low-temperature phase transitions and the role of hydrogen bonds in lawsonite. American Mineralogist, 80, 12771285.CrossRefGoogle Scholar
Lippmann, F. (1968) Die Kristallstruktur des Norsethit, BaMg(CO3)2. Mit einem Strukturvorschlag für PbMg(CO3)2 . Tschermaks Mineralogische und Petrographische Mitteilungen, 12, 299318.CrossRefGoogle Scholar
McKnight, R.E.A., Moxon, T., Buckley, A., Taylor, P.A., Darling, T.W. and Carpenter, M.A. (2008). Grain size dependence of elastic anomalies accompanying the a-b phase transition in polycrystalline quartz. Journal of Physics: Condensed Matter, 20, 075229.Google Scholar
Mrose, M.E., Chao, E.T.C., Fahey, J.J. and Milton, C. (1961) Norsethite, BaMg(CO3)2, a new mineral from the Green River formation, Wyoming. American Mineralogist, 46, 420429.Google Scholar
Nonius, B.V. (1999) "Collect". Data collection software. Bruker AXS, Karlsruhe, Germany.Google Scholar
Nowotny, H. and Zobetz, E. (1982) "KRISTALLCHEMIE". Program for solving geometrical problems in crystal structures. University of Vienna, Austria.Google Scholar
O’Keeffe, M. (1979) A proposed rigorous definition of coordination number. Acta Crystallographica, A35, 772775.CrossRefGoogle Scholar
Onac, B.P. (2002) Caves formed within upper Cretaceous skarns at Ba˘ it–a, Bihor County, Romania: mineral deposition and speleogenesis. The Canadian Mineralogist, 40, 16931703.CrossRefGoogle Scholar
Onac, B.P., Effenberger, H.S., Wynn J.G. and Povara˘, I. (2013) Rapidcreekite in the sulfuric acid weathering environment of Diana Cave, Romania. American Mineralogist, 98, 13021309.CrossRefGoogle Scholar
Otwinowski, Z. and Minor, W. (1997) Processing of Xray diffraction data collected in oscillation mode. Pp. 307326. in: Methods in Enzymology (C.W.J. Carter and R.M. Sweet, editors), 276. AcademicPress, NewYork.Google Scholar
Pawley, G.S. (1981) Unit-cell refinement from powder diffraction scans. Journal of Appl i ed Crystallography, 14, 357361.CrossRefGoogle Scholar
Peacor, D.R. (1988a) The crystal structure of kutnahorite CaMn(CO3)2 . Neues Jahrbuch für Mineralogie, Monatshefte, 1988, 539546.Google Scholar
Peacor, D.R. (1988b) The crystal structure of kutnahorite CaMn(CO3)2 . Powder Diffraction, 3, 172174.Google Scholar
Peacor, D.R., Essene, E.J. and Gaines, A.M. (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite CaMn(CO3)2 . American Mineralogist, 72, 319328.Google Scholar
Pilati, T., Demartin, F. and Gramaccioli, C.M. (1998) Lattice-dynamical estimation of atomic displacement parameters in carbonates: calcite and aragonite CaCO3, dolomite CaMg(CO3)2 and magnesite MgCO3 . Acta Crystallographica, B54, 515523.CrossRefGoogle Scholar
Platt, R.G. and Wooley, A.R. (1990) The carbonatites and fenites of Chipman Lake, Ontario. The Canadian Mineralogist, 28, 241250.Google Scholar
Reeder, R.J. (1983) Crystal chemistry of the rhombohedral carbonates. Pp. 148. in: Carbonates: Mineralogy and Chemistry (R.J. Reeder, editor). Reviews in Mineralogy, 11. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Reeder, R.J. and Dollase, W.A. (1989) Structural variation in the dolomite-ankerite solid-solution series: An X-ray, Moessbauer, and TEM study. American Mineralogist, 74, 11591167.Google Scholar
Reeder, R.J. and Markgraf, S.A. (1986) TEM observations and X-ray crystal-structure refinement of a twinned dolomite with a modulated microstructure. American Mineralogist, 71, 795804.Google Scholar
Reeder, R.J. and Wenk, H.R. (1983) Structure refinement of some thermally disordered dolomites. American Mineralogist, 68, 769776.Google Scholar
Ross, N.L. and Reeder, R.J. (1992) High-pressure structural study of dolomite and ankerite. American Mineralogist, 77, 412421.Google Scholar
Scheetz, B.E. and White, W.B. (1977) Vibrational spectra of the alkaline earth double carbonates. American Mineralogist, 62, 3650.Google Scholar
Schmidt, B.C., Gehlken, P.-L. and Böttcher, M.E. (2013) Vibrational spectra of BaMn(CO3)2 and a re-analysis of the Raman spectrum of BaMg(CO3)2 . European Journal of Mineralogy, 25, 137144.CrossRefGoogle Scholar
Schnorrer, G., Stahlmann, W. and Möllenkamp, A. ( 2001) Sekundär mineralisation in den Hochofenschlacken des Hüttenwerkes in Georgsmarienhütte, heute Georgsmarienhütte GmbH. Der Aufschlub, 52, 99108.Google Scholar
Secco, L. and Lavina, B. (1999) Crystal chemistry of two natural magmatic norsethites, BaMg(CO3)2, from an Mg-carbonatite of the alkaline carbonatitic complex of Tapira (SE Brazil). Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 8796.Google Scholar
Sheldrick, G.M. (1997) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Steyn, J.G.D. and Watson, M.D. (1967) A new occurrence of norsethite, BaMg(CO3)2 . American Mineralogist, 52, 17701775.Google Scholar
STOE & Cie Company (2013) X-AREA, Version 1.66, Stadi Vari Pilatus. Darmstadt, Germany.Google Scholar
Stromme, K.O. (1975) On the crystal structures of the high-temperature forms of strontium and barium carbonate and structurally related compounds. Acta Chemica Scandinavia, A29, 105110.CrossRefGoogle Scholar
Sundius, N. and Blix, R. (1965) Norsethite from Långban. Arkiv för Mineralogi och Geologi, 4, 277278.Google Scholar
Wilson, A.J.C. (editor) (1992) International Tables for Crystallography, Vol. C., Mathematical, Physical and Chemical Tables. Kluwer Academic Press, Dordrecht, The Netherlands.Google Scholar
Zemann, J. (1981) Zur Stereochemie der Karbonate. Fortschritte in Mineralogie, 59, 95116.Google Scholar
Zemann, J. and Zobetz, E. (1981) Do the carbonate groups in thaumasite have anomalously large deviations from coplanarity? Kristallografija, 26, 12151217.Google Scholar
Yakovenchuk, V.N., Ivanyuk, G.Y., Mikhailova, Y.A., Selivanova, E.A. and Krivovichev, S.V. (2006) Pakhomovskyite, Co3(PO4)2·8H2O, a new mineral species from Kovdor, Kola Peninsula, Russia. The Canadian Mineralogist, 44, 117123.CrossRefGoogle Scholar
Zhang, S.-Y., Wu, X., Chen, X.-L., He, M., Cao, Y.G., Song, Y.T. and Ni, D.Q. (2003) Phase relations in the (BaO)–(B2O3)–(TiO2) system and the crystal structure of BaTi(BO3)2 . Material Research Bulletin, 38, 783788.CrossRefGoogle Scholar
Zidarov, N., Petrov, O., Tarassov, M., Damyanov, Z., Tarassova, E., Petkova, V., Kalvachev, Y. and Zlatev, Z. (2009) Mn-rich norsethite from the Kremikovtsi ore deposit, Bulgaria. Neues Jahrbuch für Mineralogie, Abhandlungen, 186, 321331.CrossRefGoogle Scholar
Zucchini, A., Comodi, P., Katerinopoulou, A., Balic Zunic, T., McCammon, C. and Frondini, F. (2012) Order-disorder-reorder process in thermally treated dolomite samples: a combined powder and singlecrystal X-ray diffraction study. Physics and Chemistry of Minerals, 39, 319328.CrossRefGoogle Scholar