Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T13:05:16.256Z Has data issue: false hasContentIssue false

The structure hierarchy hypothesis

Published online by Cambridge University Press:  05 July 2018

F. C. Hawthorne*
Affiliation:
Department of Geological Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
*

Abstract

The structure hierarchy hypothesis states that structures may be ordered hierarchically according to the polymerization of coordination polyhedra of higher bond valence. A mathematical hierarchy is an ordered set of elements where the ordering reflects a natural hierarchical relation between (or arrangement of) the elements. Here, I review the structure hierarchies for the borate, uranyl oxide, phosphate, sulfate, beryllate and oxide-centred Cu, Pb and Hg minerals (plus synthetics where appropriate). Structure hierarchies have two functions: (1) they serve to organize our knowledge of minerals (crystal structures) in a coherent manner; (2) if the basis of the classification involves factors that are related to the mechanistic details of the stability and behaviour of minerals, then the physical, chemical and paragenetic characteristics of minerals should arise as natural consequences of their crystal structures and the interaction of those structures with the environment in which they occur. We may justify the structure hierarchy hypothesis by considering a hypothetical structure-building process whereby higher bond-valence polyhedra polymerize to form the structural unit. The clusters constituting the FBBs (fundamental building blocks) may polymerize to form the following types of structural unit: (1) isolated polyhedra; (2) clusters; (3) chains and ribbons; (4) sheets; and (5) frameworks. The major advantage of this approach to structure hierarchy is the fact that the hypothetical structure-building process outlined above resembles (our ideas of) crystallization from an aqueous solution, whereby complexes in aqueous and hydrothermal solutions condense to form crystal structures, or fragments of linked polyhedra in a magma condense to form a crystal. Although our knowledge of these processes is rather vague from a mechanistic perspective, the foundations of the structure hypothesis give us a framework within which to think about the processes of crystallization and dissolution.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbona, F., Calleri, M. and Ivaldi, G. (1984) Synthetic struvite, MgNH4PO4·6H2O: correct polarity and surface features of some complementary forms. Acta Crystallographica, B40, 223227.CrossRefGoogle Scholar
Åberg, M. (1969) The crystal structure of [(UO2)2(OH)2Cl2(H2O)4]. Acta Chemica Scandinavica, 23, 791810.CrossRefGoogle Scholar
Åberg, M. (1976) The crystal structure of [(UO2)4Cl2O2(OH)2(H2O)6]·4H2O a compound containing a tetranuclear aqua-chlorohydroxooxo complex of uranyl(VI). Acta Chemica Scandinavica, A30, 507514.CrossRefGoogle Scholar
Åberg, M. (1978) The crystal structure of hexaaqua-trim- hydroxo-m3-oxo-triuranyl(VI)nitrate tetrahydrate, [(UO2)3O(OH)3(H2O)6]NO3·4H2O. Acta Chemica Scandinavica, A32, 101107.CrossRefGoogle Scholar
Adiwidjaja, G., Friese, K., Klaska, K.-H. and Schlüter, J. (1997) The crystal structure of gordaite NaZn4SO4(OH)6Cl6(H2O). Zeitschrift für Kristallographie, 212, 704707.Google Scholar
Albrecht-Schmitt, T.E., Almond, P.M. and Sykora, R.E. (2003) Cation–cation interactions in neptunyl(V) compounds: Hydrothermal preparation and structural characterization of NpO2(IO3) and a- and b- AgNpO2(SeO3). Inorganic Chemistry, 42, 37883795.CrossRefGoogle Scholar
Almond, P.M., Talley, C.E., Gibbs, S.M., Peper, S.M. and Albrecht-Schmitt, T.E. (2002) Variable dimensionality and new uranium oxide topologies in the alkaline-earthmetal uranyl selenites AE[(UO2)(SeO3)2] (AE = Ca, Ba) and Sr[(UO2)(SeO3)2]·2H2O. Journal of Solid State Chemistry, 154, 358366.CrossRefGoogle Scholar
Aurivillius, K. (1965) The structural chemistry of inorganic mercury (II) compounds. Arkiv for Kemi, 23, 205211.Google Scholar
Aurivillius, B. (1976) A case of mimetic twinning: the crystal structure of Pb2OFX (X= Cl, Br and I). Chemica Scripta, 10, 156163.Google Scholar
Aurivillius, K. and Folkmarson, L. (1968) The crystal structure of terlinguaite Hg4O2Cl2 . Acta Chemica Scandinavica, 22, 25292540.CrossRefGoogle Scholar
Bachmann, H.-G. and Zemann, J. (1961) Die Kristallstruktur von Linarit, PbCuSO4(OH)2 . Acta Crystallographica, 14, 747751.CrossRefGoogle Scholar
Back, M.E. (2014) Fleischer’s Glossary of Mineral Species 2008. The Mineralogical Record, Tucson, Arizona, USA.Google Scholar
Bakakin, V.V., Rylov, G.M. and Alekseev, V.I. (1974) Refinement of the crystal structure of hurlbutite CaBe2P2O8 . Kristallografiya, 19, 12831285.[in Russian].Google Scholar
Barlow, W. (1883) Probable nature of the internal symmetry in crystals. Nature, 29, 186188.CrossRefGoogle Scholar
Barlow, W. (1898) Geometrische Untersuchung über eine mechanische Ursache der Homogenität der Struktur und der Symmetrie; mit besonderer Anwendung auf Kristallization und chemische Verbindung. Zeitschrift für Kristallographie, 29, 433461.Google Scholar
Baur, W.H. (1960) Die Kristallstruktur von FeSO4·4H2O. Naturwissenschaften, 47, 467.CrossRefGoogle Scholar
Baur, W.H. and Rama Rao, B. (1967) The crystal structure of metavauxite. Naturwissenschaften, 54, 561.CrossRefGoogle Scholar
Bean, A.C., Peper, S.M. and Albrecht-Schmitt, T.E. (2001) Structural relationships, interconversion, and optical properties of the uranyl iodates, UO2(IO3)2 and UO2(IO3)2(H2O): a comparison of reactions under mild and supercritical conditions. Chemistry of Materials, 13, 12661272.CrossRefGoogle Scholar
Behm, H. (1985) Hexpotassium(cyclo-octahydroxotetracosaoxohexadecaborato) dioxouranate(VI) dodecahyrate, K6[UO2{B16O24(OH)8}]·12H2O. Acta Crystallographica, C41, 642645.Google Scholar
Belov, N.V. (1961) Crystal Chemistry of Silicates with Large Cations. Akademia Nauk SSSR, Moscow.Google Scholar
Berlepsch, P., Armbruster, T., Brugger, J., Bykova, E.Y. and Kartashov, P.M. (1999) The crystal structure of vergasovaite Cu3O[Mo,S)O4SO4], and its relation to synthetic Cu3O[MoO4]2 . European Journal of Mineralogy, 11, 101110.CrossRefGoogle Scholar
Bermanec, V., Armbruster, T., Tiblias, D., Sturman, D. and Kniewald, G. (1994) Tuzlaite, NaCa [B5O8(OH)2]·3H2O, a new mineral with a pentaborate sheet structure from the Tuzla salt mine, Bosnia and Hercegovina. American Mineralogist, 79, 562569.Google Scholar
Bickmore, B.R. (2013) Structure and Acidity in Aqueous Solutions and Oxide–Water Interfaces. Structure and Bonding Series. Springer, Berlin.Google Scholar
Bickmore, B.R., Rosso, K.M., Nagy, K.L., Cygan, R.T. and Tadanier, C.J. (2004a) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid-base reactivity. Clays and Clay Minerals. 51, 359371.CrossRefGoogle Scholar
Bickmore, B.R., Tadanier, C.J., Rosso, K.M., Monn, W.D. and Eggett, D.L. (2004b) Bond-valence methods for pKa prediction: critical reanalysis and a new approach. Geochimica et Cosmochimica Acta, 68, 20252042.CrossRefGoogle Scholar
Bickmore, B.R., Rosso, K.M., Tadanier, C.J., Bylaska, E.J. and Doub, D. (2006) Bond-valence methods for pKa prediction. II. Bond-valence, electrostatic, molecular geometry, and solvation effects. Geochimica et Cosmochimica Acta, 70, 40574071.CrossRefGoogle Scholar
Bigi, S., Brigatti, M.F. and Capredi, S. (1991) Crystal chemistry of Fe- and Cr-rich warwickite. American Mineralogist, 76, 13801388.Google Scholar
Boher, P., Garnier, P., Gavarri, J.R. and Hewat, A.W. (1985) Monoxyde quadratique PbOa (I): Description de la transition structurale ferroélastique. Journal of Solid State Chemistry, 57, 343350.CrossRefGoogle Scholar
Bokii, G.B. and Gorogotskaya, L.I. (1969) Crystal chemical classification of sulfates. Zhurnal Strukturnoi Khimii, 10, 183185.[in Russian].Google Scholar
Bonazzi, P. and Menchetti, S. (1989) Contribution to the crystal chemistry of the minerals of the ludwigite –vonsenite series. Neues Jahrbuch für Mineralogie – Monatshefte, 1989, 6983.Google Scholar
Bonazzi, P., Menchetii, S., Sabelli, C. and Trosti-Ferroni, R. (1986) Karlite: crystal structure and chemical composition. Neues Jahrbuch für Mineralogie – Monatshefte, 1986, 253262.Google Scholar
Borene, J. (1970) Structure cristalline de la parabutlerite. Bulletin de la SociétéFrançaise Minéralogie et de Cristallographie, 93, 185189.CrossRefGoogle Scholar
Bowen, N.L. (1928) Evolution of Igneous Rocks. Princeton University Press, Princeton, New Jersey, USA.Google Scholar
Bragg, W.L. (1913) The structure of some crystals as indicated by their diffraction of X-rays. Proceedings of the Royal Society of London, A89, 248263.Google Scholar
Bragg, W.L. (1930) The structure of silicates. Zeitschrift für Kristallographie, 74, 237305.Google Scholar
Brovkin, A.A., Zayakina, N.Y. and Brovkina, V.S. (1975) Crystal structure of strontioborite Sr[B8O11(OH)4]. Soviet Physics Crystallography, 20, 563566.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 68586919.CrossRefGoogle ScholarPubMed
Brown, G.E. and Clark, J.R. (1978) Crystal structure of hydrochlorborite, Ca2[B3O3(OH)4]OB(OH3]Cl·7H2O, a seasonal evaporite mineral. American Mineralogist, 63, 814823.Google Scholar
Burdett, J.K., Lee, S. and Sha, W.C. (1984) The method of moments and the energy levels of molecules and solids. Croatica Chemica Acta, 57, 11931216.Google Scholar
Burns, P.C. (1995) Borate clusters and fundamental building blocks containing four polyhedra: why few clusters are utilized as fundamental building blocks of structures. The Canadian Mineralogist, 33, 11671176.Google Scholar
Burns, P.C. (1999) The crystal chemistry of uranium. Pp. 23–90 in: Uranium: Mineralogy, Geochemistry, and the Environment (P.C.Burns and R. Finch, editors). Reviews in Mineralogy, 38. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Burns, P.C. (2005) U6+ minerals and inorganic compounds: insights into an expanded structural hierarchy of crystal structures. The Canadian Mineralogist, 43, 18391894.CrossRefGoogle Scholar
Burns, P.C. and Finch, R.J. (1999) Wyartite: crystallographic evidence for the first pentavalent-uranium mineral. American Mineralogist, 84, 14561460.CrossRefGoogle Scholar
Burns, P.C. and Hawthorne, F.C. (1994a) Kaliborite: an example of a crystallographically symmetrical hydrogen bond. The Canadian Mineralogist, 32, 885894.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1994b) Hydrogen bonding in tunellite. The Canadian Mineralogist, 32, 895902.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1994c) Refinement of the structure of hilgardite-1A. Act a Crystallographica, C50, 653655.Google Scholar
Burns, P.C. and Hawthorne, F.C. (1995) The crystal structure of sinkankasite, a complex heteropolyhedral sheet mineral. American Mineralogist, 80, 620627.CrossRefGoogle Scholar
Burns, P.C. and Hawthorne, F.C. (1996) Static and dynamic Jahn–Teller effects in Cu2+-oxysalt minerals. The Canadian Mineralogist, 34, 10891105.Google Scholar
Burns, P.C., Grice, J.D. and Hawthorne, F.C. (1995a) Borate minerals. I. Polyhedral clusters and fundamental building blocks. The Canadian Mineralogist, 33, 11311151.Google Scholar
Burns, P.C., Novák, M. and Hawthorne, F.C. (1995b) Fluorine-hydroxyl variation in hambergite: A crystal structure study. The Canadian Mineralogist, 22, 12051213.Google Scholar
Burns, P.C., Miller, M.L. and Ewing, R.C. (1996) U6+ minerals and inorganic phases: a comparison and hierarchy of structures. The Canadian Mineralogist, 34, 845880.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997a) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Finch, R.J., Hawthorne, F.C., Miller, M.L. and Ewing, R.C. (1997b) The crystal structure of ianthinite, [U4+ 2 (UO2)4O6(OH)4(H2O)4](H2O)5: a possible phase for Pu4+ incorporation during the oxidation of spent nuclear fuel. Journal of Nuclear Materials, 249, 199206.CrossRefGoogle Scholar
Burns, P.C., Olson, R.A., Finch, R.J., Hanchar, J.M. and Thibault, Y. (2000) KNa3(UO2)2(Si4O10)2(H2O)4, a new compound formed during vapor hydration of an actinide-bearing borosilicate waste glass. Journal of Nuclear Materials, 278, 290300.CrossRefGoogle Scholar
Burns, P.C., Krivovichev, S.V. and Filatov, S.K. (2002) New Cu2+ coordination polyhedra in the crystal structure of burnsite, KCdCu7O2(SeO3)2Cl9 . The Canadian Mineralogist, 40, 15871595.CrossRefGoogle Scholar
Cahill, C.L., Krivovichev, S.V., Burns, P.C., Bekenova, G.K. and Shabanova, T.A. (2001) The crystal structure of mitryaevaite, Al5(PO4)2 [(P,S)O3(OH,O)]2F2(OH)2(H2O)8·6.48H2O, determined from a microcrystal using synchrotron radiation. The Canadian Mineralogist, 39, 179186.CrossRefGoogle Scholar
Cannillo, E., Dal Negro, A. and Ungaretti, L. (1973) The crystal structure of ezcurrite. American Mineralogist, 58, 110115.Google Scholar
Cantos, P.M., Jouffret, L.J., Wilson, R.E., Burns, P.C. and Cahill, C.L. (2013) Series of uranyl-4,4’- biphenyldicarboxylates and an occurrence of a cation-cation interaction: Hydrothermal synthesis and in situ Raman studies. Inorganic Chemistry, 52, 94879495.CrossRefGoogle Scholar
Catti, M., Ferraris, G. and Ivaldi, G. (1979) Refinement of the crystal structure of anapaite, Ca2Fe(PO4)2(H2O)4. Hydrogen bonding and relationships with the bihydrated phase. Bulletin de la SociétéFrançaise Minéralogie et de Cristallographie, 102, 314318.CrossRefGoogle Scholar
Chopin, C., Brunet, F., Gebert, W., Medenbach, O. and Tillmanns, E. (1993) Bearthite, Ca2Al(PO4)2(OH), a new mineral from high-pressure terranes of the western Alps. Schweizerische Mineralogische und Petrographische Mitteilungen, 73, 19.Google Scholar
Christ, C.L. (1960) Crystal chemistry and systematic classification of hydrous borate minerals. American Mineralogist, 45, 334340.Google Scholar
Christ, C.L. and Clark, J.R. (1977) A crystal-chemical classification of borate structures with emphasis on hydrated borates. Physics and Chemistry of Minerals, 2, 5987.CrossRefGoogle Scholar
Christ, C.L., Truesdell, A.H. and Erd, R.C. (1967): Borate mineral assemblages in the system Na2O–CaO–MgO–B2O3–H2O. Geochimica et Cosmochimica Acta, 31, 313337.CrossRefGoogle Scholar
Coda, A., Rossi, G., Ungaretti, L. and Carobbi, S.G. (1967) The crystal structure of aminoffite. Atti della Accademia Nazionale dei Lincei, Classe di Scienze Fisiche, Matematiche e Naturali, Rendiconti, Serie, 8(43), 225232.Google Scholar
Coda, A., Ungaretti, L. and Guista, A.D. (1974) The crystal structure of leifite, Na6[Si16Al2 (BeOH)2O39]·1.5H2O. Acta Crystallographica, B30, 396401.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1994) The crystal structure of kombatite, Pb14(VO4)2O9Cl4, a complex heteropolyhedral-sheet mineral. American Mineralogist, 79, 550554.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1997) The crystal structure of wicksite. The Canadian Mineralogist, 35, 777784.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1998) The crystal structure of blatterite, Sb5+(Mn3+,Fe3+)9(Mn2+,Mg)35 (BO3)16O32, and structural hierarchy in Mn3+- bearing zigzag borates. The Canadian Mineralogist, 36, 11711193.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1999) The structure topology of sidpietersite, Pb4 2+ (S6+O3S2–)O2 (OH)2, a novel thiosulphate structure. The Canadian Mineralogist, 37, 12751282.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2003) The crystal structure of vasilyevite, (Hg2)2+ 10O6I3(Br,Cl)3(CO3). The Canadian Mineralogist, 41, 11731181.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (2009) The crystal structure of tedhadleyite, Hg2+Hg10 1+O4I2(Cl,Br)2, from the Clear Creek Claim, San Benito County, California. Mineralogical Magazine, 73, 227234.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C. and Černý, P. (2009a) The crystal structure of ercitite, Na2(H2O)4 [Mn3++2(OH)2(PO4)2], and its relation to bermanite, Mn2+(H2O)4[Mn3++2(OH)2(PO4)2]. The Canadian Mineralogist, 47, 173180.CrossRefGoogle Scholar
Cooper, M.A., Hawthorne, F.C. and Moffatt, E. (2009b) Steverustite, Pb2+5(OH)5[Cu1+(S6+O3S2–)3](H2O)2, a new thiosulfate mineral from the Frongoch Mine Dump, Devils Bridge, Ceredigion, Wales: Description and crystal structure. Mineralogical Magazine, 73, 235250.CrossRefGoogle Scholar
Cooper, M.A., Abdu, Y.A., Hawthorne, F.C. and Kampf, A.R. (2013) The crystal structure of comancheite, Hg2+ 55N3– 24 (OH,NH2)4(Cl,Br)34, and crystal-chemical and spectroscopic discrimination of N3– and O2– anions in Hg2+ compounds. Mineralogical Magazine, 77, 32173237.CrossRefGoogle Scholar
Cooper, W.F., Larsen, F.K., Coppens, P. and Giese, R.F. (1973) Electron population analysis of accurate diffraction data. V. Structure and one-center charge refinement of the light-atom mineral kernite, Na2B4O6(OH)3·3H2O. American Mineralogist, 58, 2131.Google Scholar
Corazza, E. (1974) The crystal structure of kurnakovite: a refinement. Acta Crystallographica, B30, 21942199.CrossRefGoogle Scholar
Corazza, E., Menchetti, S. and Sabelli, C. (1974) The crystal structure of biringuccite, Na4[B10O16(OH)2]·2H2O. American Mineralogist, 59, 10051015.Google Scholar
Corbridge, D.E.C. (1985) Phosphorous. An Outline of its Chemistry, Biochemistry and Technology, 3rd Edition, Elsevier, Amsterdam.Google Scholar
Cordsen, A. (1978) A crystal structure refinement of libethenite. The Canadian Mineralogist, 16, 153157.Google Scholar
Cousson, A., Dabos, S., Abazli, H., Nectoux, F., Pagès, M. and Choppin, G. (1984) Crystal structure of a neptunyl cation-cation complex (NpO2+) with mellitic acid: Na4(NpO2)2Cl12O12·8H2O. Journal of the Less-Common Metals, 99, 233240.CrossRefGoogle Scholar
Dahmen, T. and Gruehn, R. (1993) Beitrage zum thermischen Verhalten von Sulfaten. IX. Einkristallstrukturverfeinerung der Metall(III)-sulfate Cr2(SO4)3 und Al2(SO4)3 . Zeitschrift für Kristallographie, 204, 5765.Google Scholar
Dal Negro, A. and Tadini, C. (1974) Refinement of the crystal structure of fluoborite, Mg3(F,OH)3(BO3). Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 94100.CrossRefGoogle Scholar
Dal Negro, A., Martin Pozas, J.M. and Ungaretti, L. (1975) The crystal structure of ameghinite. American Mineralogist, 60, 879883.Google Scholar
Demartin, F., Gramaccioli, C.M. and Pilati, T. (1992) The importance of accurate crystal structure determination of uranium minerals. II. Soddyite (UO2)2(SiO4)·2H2O. Acta Crystallographica, C48, 14.Google Scholar
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010) Pyracmonite, (NH4)3Al(SO4)3, a new ammonium iron sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.CrossRefGoogle Scholar
Demartin, F., Castellano, C. and Campostrini, I. (2013) Aluminopyracmonite, (NH4)3Fe(SO4)3, a new ammonium aluminium sulfate from La Fossa Crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine 77, 443451.CrossRefGoogle Scholar
Dowty, E. and Clark, J.R. (1973) Crystal-structure refinement s for or t horhombic boracite, Mg3ClB7O13, and a trigonal, iron-rich analogue. Zeitschrift für Kristallographie, 138, 6499.CrossRefGoogle Scholar
Duribreux, I., Dion, C., Abraham, F. and Saadi, M. (1999) CsUV3O11, a new uranyl vanadate with a layered structure. Journal of Solid State Chemistry, 146, 258265.CrossRefGoogle Scholar
Edwards, J.O. and Ross, V.F. (1960) Structural principles of the hydrated polyborates. Journal of Inorganic and Nuclear Chemistry, 15, 329337.CrossRefGoogle Scholar
Effenberger, H. (1985) Cu2O(SO4), Dolerophanite: Refinement of the crystal structure, with a comparison of [OCu(II)4] tetrahedra in inorganic compounds. Monatshefte für Chemie, 116, 927931.CrossRefGoogle Scholar
Effenberger, H. and Pertlik, F. (1986) Die Kristallstrukturen der Kupfer (II)-oxo-selenite Cu2O(SeO3)(kubisch und monoklin) und Cu4O (SeO3)3 (monoklin und triklin). Monatshefte für Chemie, 117, 887896.CrossRefGoogle Scholar
Effenberger, H. and Zemann, J. (1984) The crystal structure of caratiite. Mineralogical Magazine, 48, 541546.CrossRefGoogle Scholar
Effenberger, H., Pertlik, F. and Zemann, J. (1986) Refinement of the crystal structure of krausite: a mineral with an interpolyhedral oxygen–oxygen contact shorter than the hydrogen bond. American Mineralogist, 71, 202205.Google Scholar
Egorov-Tismenko, Y.K., Simonov, M.A. and Belov, N.V. (1980) Crystal structures of calciborite Ca2[BO3BO]2 and synthetic calciboraluminate 2CaAl[BO3] = Ca2 [Al2O3BO]2. Soviet Physics Doklady, 25, 226227.Google Scholar
Evans, H.T. Jr. and Hughes, J.M. (1990) Crystal chemistry of the natural vanadium bronzes. American Mineralogist, 75, 508521.Google Scholar
Fanfani, L. and Zanazzi, P.F. (1967) Structural similarities of some secondary lead minerals. Mineralogical Magazine, 36, 522529.CrossRefGoogle Scholar
Fanfani, L. and Zanazzi, P.F. (1968) The crystal structure of vauquelinite and the relationships to fornacite. Zeitschrift für Kristallographie, 126, 433443.CrossRefGoogle Scholar
Fanfani, L., Nunzi, A. and Zanazzi, P.F. (1970) The crystal structure of roemerite. American Mineralogist, 55, 7889.Google Scholar
Fanfani, L., Nunzi, A. and Zanazzi, P.F. (1971) The crystal structure of butlerite. American Mineralogist, 56, 751757.Google Scholar
Fanfani, L., Nunzi, A., Zanazzi, P.F. and Zanzari, A.R. (1973) The copiapite problem: the crystal structure of a ferrian copiapite. American Mineralogist, 58, 314322.Google Scholar
Fanfani, L., Nunzi, A., Zanazzi, P.F. and Zanzari, A.R. (1976) Additional data on the crystal structure of montgomeryite. American Mineralogist, 61, 1214.Google Scholar
Fang, J.H. and Robinson, P.D. (1970) Crystal structures and mineral chemistry of hydrated ferric sulfates. I. The crystal structure of coquimbite. American Mineralogist, 55, 15341540.Google Scholar
Filatov, S.K., Semenova, T.F. and Vergasova, L.P. (1992) Types of polymerization of [OCu4]6+ tetrahedra in compounds with ‘additional’ oxygen atoms. Proceedings of the USSR Academy of Sciences, 322, 536539.[in Russian].Google Scholar
Finch, R.J., Cooper, M.A., Hawthorne, F.C. and Ewing, R.C. (1999) Refinement of the crystal structure of rutherfordine. The Canadian Mineralogist, 37, 929938.Google Scholar
Finger, L.W. (1985) Fingerite, Cu11O2(VO4)6, new vanadium sublimate from Izalco volcano, El Salvador: crystal structure. American Mineralogist, 70, 197199.Google Scholar
Fischer, A. (2003) Competitive coordination of the uranyl ion by perchlorate and water – the crystal structures of UO2(ClO4)2·3H2O, UO2(ClO4)2·5H2O and redetermination of UO2(ClO4)2·7H2O. Zeitschrift für Anorganische und Allgemeine Chemie, 629, 10121016.CrossRefGoogle Scholar
Foley, J.A., Hughes, J.M. and Lange, D. (1997) The atomic arrangement of brackebuschite, redefined as Pb2(Mn3++,Fe3+)(VO4)2(OH), and comments on Mn3+ octahedra. The Canadian Mineralogist, 35, 10271033.Google Scholar
Gasperin, M. (1987) Structure du borate d’uranium UB2O6. Acta Crystallographica, C43, 20312033.Google Scholar
Ghose, S. and Wan, C. (1977) Aristarainite: Na2Mg[B6O8(OH)4]2·4H2O: a sheet structure with chains of hexaborate polyanions. American Mineralogist, 62, 979989.Google Scholar
Ghose, S., Wan, C. and Clark, J.R. (1978) Ulexite, NaCaB5O6(OH)6·5H2O: structure refinement, polyanion configuration, hydrogen bonding, and fiber optics. American Mineralogist, 63, 160171.Google Scholar
Giacovazzo, G., Scordari, F., Todisco, A. and Menchetti, S. (1976) Crystal structure model for metavoltine from Sierra Gorda. Tschermaks Mineralogische und Petrographische Mitteilungen, 23, 155166.CrossRefGoogle Scholar
Giese, R.F. Jr. and Penna, G. (1983) The crystal structure of sulfoborite, Mg3SO4(B(OH)4)2(OH)F. American Mineralogist, 68, 255261.Google Scholar
Giester, G. and Zemann, J. (1987) The crystal structure of the natrochalcite - type compound s (Me+)Cu2(OH)(ZO4)2·H2O (Me+ = Na, K, Rb; Z = S, Se), with special reference to the hydrogen bonds. Zeitschrift für Kristallographie, 179, 431442.CrossRefGoogle Scholar
Giester, G., Mikenda, W. and Pertlik, F. (1996) Kleinite from Terlingua, Brewster County, Texas: investigations by single crystal X-ray diffraction, and vibrational spectroscopy. Neues Jahrbuch für Mineralogie – Monatshefte, 1996, 4956.Google Scholar
Giuseppetti, G. and Tadini, C. (1983) Structural analysis and refinement of Bolivian creedite, Ca3Al2F8(OH)2(SO4)·(H2O)2. The role of the hydrogen atoms. Neues Jahrbuch für Mineralogie – Monatshefte, 1983, 6978.Google Scholar
Giuseppetti, G. and Tadini, C. (1984) The crystal structure of childrenite from Tavistock (SW England), Ch89Eo11 term of childrenite–eosphorite series. Neues Jahrbuch für Mineralogie – Monatshefte, 1984, 263271.Google Scholar
Giuseppetti, G., Mazzi, F., Tadini, C., Larsen, A.O., Asheim, A. and Raade, G. (1990) Berborite polytypes. Neues Jahrbuch für Mineralogie – Abhandlungen, 162, 101116.Google Scholar
Giuseppetti, G., Tadini, C. and Mattioli, V. (1992) Bertrandite, Be4Si2O7(OH)2, from Val Vigezzo (NO) Italy: The X-ray structural refinement. Neues Jahrbuch für Mineralogie – Monatshefte, 1992, 1319.Google Scholar
Gorskaya, M.G., Filatov, S.K., Rozhdestvenskaya, I.V. and Vergasova, L.P. (1992) The crystal structure of klyuchevskite, K3Cu3(Fe,Al)O2(SO4)4, a new mineral from Kamchatka volcanic sublimates. Mineralogical Magazine, 56, 411416.CrossRefGoogle Scholar
Graeber, E.J. and Rosenzweig, A. (1971) The crystal structures of yavapaiite, KFe(SO4)2, and goldichite, KFe(SO4)2(H2O)4 . American Mineralogist, 56, 19171933.Google Scholar
Grice, J.D. (1999) Redetermination of the crystal structure of hanawaltite. The Canadian Mineralogist, 37, 775778.Google Scholar
Grice, J.D. and Hawthorne, F.C. (1989) Refinement of the crystal structure of leucophanite. The Canadian Mineralogist, 27, 193197.Google Scholar
Grice, J.D. and Hawthorne, F.C. (2002) New data on meliphanite, Ca4(Na,Ca)4Be4AlSi7O24(F,O)4 . The Canadian Mineralogist, 40, 971980.CrossRefGoogle Scholar
Grice, J.D., Burns, P.C. and Hawthorne, F.C. (1994) Determination of the megastructures of the borate polymorphs pringleite and ruitenbergite. The Canadian Mineralogist, 32, 114.Google Scholar
Grice, J.D., Burns, P.C. and Hawthorne, F.C. (1999) Borate minerals II. A hierarchy of structures based on the borate fundamental building block. The Canadian Mineralogist, 37, 731762.Google Scholar
Groat, L.A. and Hawthorne, F.C. (1986) Structure of ungemachite, K3Na8Fe3+(SO4)6(NO3)2(H2O)6 a mixed sulfate-ni t rate mineral. American Mineralogist, 71, 826829.Google Scholar
Groat, L.A., Roberts, A.C. and Le Page, Y. (1995) The crystal structure of wattersite, Hg1+ 4 Hg2+Cr6+O6 . The Canadian Mineralogist, 33, 4146.Google Scholar
Guy, B.B. and Jeffrey, G.A. (1966) The crystal structure of fluellite, Al2PO4F2(OH)(H2O)7. American Mineralogist, 51, 15791592.Google Scholar
Hansen, S., Faelth, L. and Johnson, O. (1984) Bergslagite, a mineral with tetrahedral berylloarsenate sheet anions. Zeitschrift für Kristallographie, 166, 7380.Google Scholar
Harlow, G.E. and Hawthorne, F.C. (2008) Herderite from Mogok, Myanmar, and comparison with hydroxyl-herderite from Ehrenfriedersdorf, Germany. American Mineralogist, 93, 15451549.CrossRefGoogle Scholar
Harrison, W.T.A. (2000) Synthetic mansfieldite, AlAsO4·2H2O. Acta Crystallographica, C56, e421.CrossRefGoogle Scholar
Harrison, W.T.A., Nenoff, T.M., Gier, T.E. and Stucky, G.D. (1993) Tetrahedral-atom 3-ring groupings in 1-dimensional inorganic chains: Be2AsO4OH·4H2O and Na2ZnPO4OH·7H2O. Inorganic Chemistry, 32, 24372441.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1991) The crystal structure and thermal expansion of tugtupite, Na8(Al2Be2Si8O24)Cl2 . The Canadian Mineralogist, 29, 385390.Google Scholar
Hawthorne, F.C. (1976a) The hydrogen positions in scorodite. Acta Crystallographica, B32, 28912892.CrossRefGoogle Scholar
Hawthorne, F.C. (1976b) Refinement of the crystal structure of adamite. The Canadian Mineralogist, 14, 143148.Google Scholar
Hawthorne, F.C. (1979) The crystal structure of morinite. The Canadian Mineralogist, 17, 93102.Google Scholar
Hawthorne, F.C. (1982) The crystal structure of bøggildite. The Canadian Mineralogist, 20, 263270.Google Scholar
Hawthorne, F.C. (1983a) Graphical enumeration of polyhedral clusters. Acta Crystallographica, A39, 724736.CrossRefGoogle Scholar
Hawthorne, F.C. (1983b) The crystal structure of tancoite. Tschermaks Mineralogische und Petrographische Mitteilungen, 31, 121135.CrossRefGoogle Scholar
Hawthorne, F.C. (1984) The crystal structure of stenonite and the classification of the alumino fluoride minerals. The Canadian Mineralogist, 22, 245251.Google Scholar
Hawthorne, F.C. (1985a) Towards a structural classification of minerals: The VIMIVT2On minerals. American Mineralogist, 70, 455473.Google Scholar
Hawthorne, F.C. (1985b) Refinement of the crystal structure of blödite: Structural similarities in the [VIM(IVTj4)2jn] finite-cluster minerals. The Canadian Mineralogist, 23, 669674.Google Scholar
Hawthorne, F.C. (1986) Structural hierarchy in VIMxIIITyjz minerals. The Canadian Mineralogist, 24, 625642.Google Scholar
Hawthorne, F.C. (1990) Structural hierarchy in M[6]T[4]jn minerals. Zeitschrift für Kristallographie, 192, 152.CrossRefGoogle Scholar
Hawthorne, F.C. (1992) The role of OH and H2O in oxide and oxysalt minerals. Zeitschrift für Kristallographie, 201, 183206.Google Scholar
Hawthorne, F.C. (1994) Structural aspects of oxide and oxysalt crystals. Acta Crystallographica, B50, 481510.CrossRefGoogle Scholar
Hawthorne, F.C. (1997) Structural aspects of oxide and oxysalt minerals. Pp. 373–429 in: European Mineralogical Union Notes in Mineralogy Vol. 1 (S. Merlino, editor). Eötvös University Press, Budapest, Hungary.Google Scholar
Hawthorne, F.C. (1998) Structure and chemistry of phosphate minerals. Mineralogical Magazine, 62, 141164.CrossRefGoogle Scholar
Hawthorne, F.C. (2006) Landmark Papers: Structure Topology. Mineralogical Society of Great Britain and Ireland, London.Google Scholar
Hawthorne, F.C. (2012a) A bond-topological approach to theoretical mineralogy: crystal structure, chemical composition and chemical reactions. Physics and Chemistry of Minerals, 39, 841874.CrossRefGoogle Scholar
Hawthorne, F.C. (2012b) Bond topology and structuregenerating functions: Graph-theoretic prediction of chemical composition and structure in polysomatic T–O–T (biopyribole) and H–O–H structures. Mineralogical Magazine, 76, 10531080.CrossRefGoogle Scholar
Hawthorne, F.C. and Ferguson, R.B. (1975) Refinement of the crystal structure of kröhnkite. Acta Crystallographica, B31, 17531755.CrossRefGoogle Scholar
Hawthorne, F.C. and Grice, J.D. (1987) The crystal structure of ehrleite, a tetrahedral sheet structure. The Canadian Mineralogist, 25, 767774.Google Scholar
Hawthorne, F.C. and Groat, L.A. (1985) The crystal structure of wroewolfeite, a mineral with [(Cu4(OH)6(SO4)(H2O)] sheets. American Mineralogist, 70, 10501055.Google Scholar
Hawthorne, F.C. and Huminicki, D.M.C. (2002) The crystal chemistry of beryllium. Pp. 333–404 in: Beryllium: Mineralogy, Petrology, and Geochemistry (E.S. Grew, editor). Reviews in Mineralogy & Geochemistry, 50. Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M.S. (2000) Topological enumeration of decorated [Cu2+j2]N sheets in hydroxy-hydrated copper-oxysalt minerals. The Canadian Mineralogist, 38, 751761.CrossRefGoogle Scholar
Hawthorne, F.C. and Schindler, M.S. (2008) Understanding the weakly bonded constituents in oxysalt minerals. Zeitschrift für Kristallographie, 223, 4168.Google Scholar
Hawthorne, F.C. and Schindler, M.S. (2014) Crystallization and Dissolution in Aqueous Solution: A Bond-Valence Approach. Pp. 161–189 in: Bond Valences (I.D. Brown and K.R. Poeppelmeier, editors). Springer, Berlin.Google Scholar
Hawthorne, F.C. and Sokolova, E. (2012) The role of H2O in controlling bond topology: The [6]Mg(SO4)(H2O)n (n = 0–6) structures. Zeitschrift für Kristallographie, 227, 594603.CrossRefGoogle Scholar
Hawthorne, F.C., Groat, L.A., Raudsepp, M. and Ercit, T.S. (1987) Kieserite, Mg(SO4)(H2O), a titanite group mineral. Neues Jahrbuch für Mineralogie – Abhandlungen, 157, 121132.Google Scholar
Hawthorne, F.C., Groat, L.E. and Eby, R.K. (1989) Antlerite, Cu3SO4(OH)4, a heteropolyhedral wallpaper structure. The Canadian Mineralogist, 27, 205209.Google Scholar
Hawthorne, F.C., Kimata, M., Černý, P., Ball, N., Rossman, G.R. and Grice, J.D. (1991) The crystal chemistry of the milarite-group minerals. American Mineralogist, 76, 18361856.Google Scholar
Hawthorne, F.C., Cooper, M. and Sen Gupta, P.K. (1994) The crystal structure of pinchite, Hg5Cl2O4 . American Mineralogist, 79, 11991203.Google Scholar
Hawthorne, F.C., Burns, P.C., Grice, J.D. (1996) The crystal chemistry of boron. Pp. 41–116 in: Boron: Mineralogy, Petrology, and Geochemistry (E.S. Grew and L.M. Anovitz, editors). Reviews in Mineralogy, 33. The Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1–112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor, and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. The Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar
Hayden, l.A. and Burns, P.C. (2002) A novel uranyl sulfate cluster in the structure of Na6(UO2)(SO4)4 (H2O)2 . Journal of Solid State Chemistry, 163, 313318.CrossRefGoogle Scholar
Hazen, R.M. and Finger, L.W. (1986) High-pressure and high-temperature crystal chemistry of beryllium oxide. Journal of Applied Physics, 59, 37283733.CrossRefGoogle Scholar
Hazen, R.M., Au, A.Y. and Finger, L.W. (1986) Highpressure crystal chemistry of beryl (Be3Al2Si6O18) and euclase (BeAlSiO4OH). American Mineralogist, 71, 977984.Google Scholar
Heller, G. (1970) Darstellung ynd Systematisierungvon Boraten und Polyboraten. Fortschritte Der Chemischen Forschung, 15, 206280.CrossRefGoogle Scholar
Herwig, S. and Hawthorne, F.C. (2006) The topology of hydrogen bonding in minerals of the brandtite, collinsite and fairfieldite groups. The Canadian Mineralogist, 44, 11811196.CrossRefGoogle Scholar
Hess, H., Keller, P. and Riffel, H. (1988) The crystal structure of chenite, Pb4Cu(OH)6(SO4)2 . Neues Jahrbuch für Mineralogie – Monatshefte, 1988, 259264.Google Scholar
Hesse, K.-F. and Stuempel, G. (1986) Crystal structure of harstigite, MnCa6Be4(SiO4)2(Si2O7)2(OH)2 . Zeitschrift für Kristallographie, 177, 143148.CrossRefGoogle Scholar
Hill, R.J. (1985) Refinement of the structure of orthorhombic PbO (massicot) by Rietveld analysis of neutron powder diffraction data. Acta Crystallographica, C41, 12811283.Google Scholar
Hoyos, M.A., Calderon, T., Vergara, I. and Garcia-Sole, J. (1993) New structural and spectroscopic data for eosphorite. Mineralogical Magazine, 57, 329336.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne FC (2002a) The crystal chemistry of the phosphate minerals. Pp. 123–253 in: Phosphates (M.L. Kohn, J. Rakovan and J.M. Hughes, editors). Reviews in Mineralogy and Geochemistry, 48. Mineralogical Society of America and the Geochemical Society, Washington DC.CrossRefGoogle Scholar
Huminicki, D.M.C. and Hawthorne, F.C. (2002b) Hydrogen bonding in the crystal structure of seamanite. The Canadian Mineralogist, 40, 923928.CrossRefGoogle Scholar
Ijdo, D.J.W. (1993) Pb3U11O36, a Rietveld refinement of neutron powder diffraction data. Acta Crystallographica, C49, 654656.Google Scholar
Ingri, N. (1963): Equilibrium studies of polyanions containing BIII, SiIV, GeIV and VV. Svensk Kemisk Tidskrift, 75, 334.Google Scholar
Jackson, J.M. and Burns, P.C. (2001) A re-evaluation of the structure of weeksite, a uranyl silicate framework mineral. The Canadian Mineralogist, 39, 187195.CrossRefGoogle Scholar
Jahn, H.A. and Teller, E. (1937) Stability of polyatomic molecules in degenerate electronic states. Proceedings of the Royal Society, Series A, 161, 220235.Google Scholar
Jarosch, D. (1985) Kristallstruktur des Leonits; K2Mg(SO4)2(H2O)4 . Zeitschrift für Kristallographie, 173, 7579.CrossRefGoogle Scholar
Kampf, A.R. (1977) Minyulite: its atomic arrangement. American Mineralogist, 62, 256262.Google Scholar
Kampf, A.R. (1992) Beryllophosphate chains in the structures of fransoletite, parafransoletite, and ehrleite and some general comments on beryllophosphate linkages. American Mineralogist, 77, 848856.Google Scholar
Kampf, A.R. and Moore, P.B. (1976) The crystal structure of bermanite, a hydrated manganese phosphate. American Mineralogist, 61, 12411248.Google Scholar
Kapshukov, I.I., Volkov, Y.F., Moskvitsev, E.P., Lebedev, I.A. and Yakovlev, G.N. (1971) Crystalline-structure of uranyl tetranitrates. Zhurnal Strukturnoi Khimii, 12, 9498.[in Russian].Google Scholar
Keller, H.L. (1983) Eine neuartige Blei-Sauerstoff- Baugruppe: Pb8O8+4. Angewandte Chemie, 95, 318319.CrossRefGoogle Scholar
Khan, A.A. and Baur, W.H. (1972) Salt hydrates. VIII. The crystal structures of sodium ammonium orthochromate dihydrate and magnesium diammonium bis(hydrogen ortho phosphate) tetrahydrate and a discussion of the ammonium ion. Acta Crystallographica, B28, 683693.CrossRefGoogle Scholar
Klaska, K.H. and Jarchow, O. (1977) Die Bestimmung der Kristallstruktur von Trimerit CaMn2(BeSiO4)3 und das Trimeritgesetz der Verzwillingung. Zeitschrift für Kristallographie, 145, 4665.CrossRefGoogle Scholar
Kniep, R. and Mootz, D. (1973) Metavariscite - a redetermination of its crystal structure. Acta Crystallographica, B29, 22922294.CrossRefGoogle Scholar
Kniep, R., Mootz, D. and Vegas, A. (1977) Variscite. Acta Crystallographica, B33, 263265.CrossRefGoogle Scholar
Kolitsch, U. and Giester, G. (2000) Elyite, Pb4Cu(SO4)O2(OH)4·H2O: Crystal structure and new data. American Mineralogist, 85, 18161821.CrossRefGoogle Scholar
Konnert, J.A., Clark, J.R. and Christ, C.L. (1970) Crystal structure of fabianite, CaB3O5(OH), and comparison with the structure of its synthetic dimorph. Zeitschrift für Kristallographie, 132, 241254.CrossRefGoogle Scholar
Kostov, I. and Breskovska, V. (1989) Phosphate, Arsenate and Vanadate Minerals. Crystal Chemistry and Classification. Kliment Ohridski University Press, Sofia, Bulgaria.Google Scholar
Krivovichev, S.V. (2004) Combinatorial topology of salts of inorganic oxoacids: zero-, one- and twodimensional units with corner-sharing between coordination polyhedra. Crystallography Reviews, 10, 185232.CrossRefGoogle Scholar
Krivovichev, S.V. (2008) Structural Crystallography of Inorganic Oxysalts. International Union of Crystallography Monographs on Crystallography, 22, Oxford University Press, Oxford, UK.Google Scholar
Krivovichev, S.V. (2009) Structural Mineralogy and Inorganic Crystal Chemistry. St. Petersburg University Press, 398 pp.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2000a) Crystal chemistry of uranyl molybdates. II. The crystal structure of iriginite. The Canadian Mineralogist, 38, 847851.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2000b) Crystal chemistry of basic lead carbonates. II. Crystal structure of synthet i c ‘plumbonacrite’. Mineralogical Magazine, 64, 10691075.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2001a) Crystal chemistry of uranyl molybdates. III. New structural themes in Na6[(UO2)2O(MoO4)4], Na6[(UO2) (MoO4)4] and K6[(UO2)2O(MoO4)4]. The Canadian Mineralogist, 39, 197206.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2001b) Crystal chemistry of lead oxide chlorides. I. Crystal structures of synthetic mendipite, Pb3O2Cl2, and synthetic damaraite, Pb3O2(OH)Cl. European Journal of Mineralogy, 13, 801809.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2002a) Crystal chemistry of uranyl molybdates. VI. New uranyl molybdate units in the structures of Cs4[(UO2)3O (MoO4)2(MoO5)] and Cs6[(UO2)(MoO4)4]. The Canadian Mineralogist, 40, 201209.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2002b) Crystal chemistry of rubidium uranyl molybdates: crystal structures of Rb6[(UO2)(MoO4)4],Rb6[(UO2)2O(MoO4)4], Rb2[(UO2)(MoO4)2], Rb2[(UO2)2(MoO4)3] and Rb2 [(UO2)6(MoO4)7 (H2O)2]. Journal of Solid State Chemistry, 168, 245258.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2003a) The first sodium uranyl chromate, Na4[(UO2)(CrO4)3]: synthesis and crystal structure determination. Zeitschrift für Anorganische und Allgemeine Chemie, 629, 19651968.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2003b) Geometrical isomerism in uranyl chromates. I. Crystal structures of (UO2)(CrO4)(H2O)2, [(UO2)(CrO4)(H2O)2](H2O) and [(UO2)(CrO4)(H2O)2]4(H2O)9. Zeitschrift für Kristallographie, 218, 568574.Google Scholar
Krivovichev, S.V. and Burns, P.C. (2003c) Structural topology of potassium uranyl chromates: crystal structures of K8[(UO2)(CrO4)4](NO3)2, K5[(UO2) (CrO4)3](NO3)(H2O)3, K4[(UO2)3(CrO4)5](H2O)8 and K2[(UO2)2(CrO4)3(H2O)2](H2O)4 . Zeitschrift für Kristallographie, 218, 725752.Google Scholar
Krivovichev, S. and Burns, P.C. (2005) Crystal chemistry of uranyl molybdates. XI. Crystal structures of Cs2[(UO2)(MoO4)2] and Cs2[(UO2) (MoO4)2](H2O). The Canadian Mineralogist, 43, 713720.CrossRefGoogle Scholar
Krivovichev, S.V. and Burns, P.C. (2006) The crystal structure of Pb8O5(OH)2Cl4, a synthetic analogue of blixite? The Canadian Mineralogist, 44, 515522.CrossRefGoogle Scholar
Krivovichev, S.V. and Filatov, S.K. (1999a) Structural principles for minerals and inorganic compounds containing anion-centered tetrahedra. American Mineralogist, 84, 10991106.CrossRefGoogle Scholar
Krivovichev, S.V. and Filatov, S.K. (1999b) Metal arrays in structural units based on anion-centered metal tetrahedra. Acta Crystallographica, B55, 664676.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K. and Semenova, T.F. (1998a) Types of cationic complexes on the base of oxocentered tetrahedra [OM4] in crystal structures of inorganic compounds. Russian Chemical Reviews, 67, 137155.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K., Semenova, T.F. and Rozhdestvenskaya, I.V. (1998b) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra. I. Crystal structure of chloromenite, Cu9O2(SeO3)4Cl6. Zeitschrift für Kristallographie, 213, 645649.Google Scholar
Krivovichev, S.V., Shuvalov, R.R., Semenova, T.F. and Filatov, S.K. (1999) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra III. Crystal structure of georgbokiite, Cu5O2(SeO3)2Cl2. Zeitschrift für Kristallographie, 214, 135138.Google Scholar
Krivovichev, S.V., Finch, R.J. and Burns, P.C. (2001) Crystal chemistry of uranyl molybdates. V. Topologically distinct uranyl dimolybdate sheets in the structures of Na2[(UO2)(MoO4)2] and K2 [(UO2)(MoO4)2](H2O). The Canadian Mineralogist, 40, 193200.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K. and Burns, P.C. (2002) The cuprite-like framework of OCu4 tetrahedra in the crystal structure of synthetic melanothallite, Cu2OCl2, and its negative thermal expansion. The Canadian Mineralogist, 40, 11851190.CrossRefGoogle Scholar
Krivovichev, S.V., Avdontseva, E.Yu. and Burns, P.C. (2004) Synthesis and crystal structure of Pb3O2(SeO3). Zeitschrift für Anorganische und Allgemeine Chemie, 630, 558562.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K. and Cherepansky, P.N. (2009a) The crystal structure of alumoklyuchevskite, K3Cu3AlO2(SO4)4. Geology of Ore Deposits 51, 656661.CrossRefGoogle Scholar
Krivovichev, S.V., Turner, R.W., Rumsey, M., Siidra, O.I. and Kirk, C.A. (2009b) The crystal structure and chemistry of mereheadite. Mineralogical Magazine, 73, 103117.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K. and Vergasova, L.P. (2013a) The crystal structure of ilinskite, NaCu5O2(SeO3)2Cl3, and review of mixed-ligand CuOmCln coordination geometries in minerals and inorganic compounds. Mineralogy and Petrology, 107, 235242.CrossRefGoogle Scholar
Krivovichev, S.V., Mentré, O., Siidra, O.I., Colmont, M. and Filatov, S.K. (2013b) Anion-centered tetrahedra in inorganic compounds. Chemical Reviews, 113, 64596535.CrossRefGoogle Scholar
Krogh-Moe, J. (1962) The crystal structure of lithium diborate, Li20·2B2O3 . Acta Crystallographica, 15, 190193.CrossRefGoogle Scholar
Krot, N.N. and Grigoriev, M.S. (2004) Cation-cation interaction in crystalline actinide compounds. Russian Chemical Reviews, 73, 89100.CrossRefGoogle Scholar
Lepore, G.O. and Welch, M.M. (2010) The crystal structure of parkinsonite, nominally Pb7MoO9Cl2: a naturally occurring Aurivillius phase. Mineralogical Magazine, 74, 269275.CrossRefGoogle Scholar
Li, Y. and Burns, P.C. (2000a) Investigations of crystalchemical variability in lead uranyl oxide hydrates. I. Curite. The Canadian Mineralogist, 38, 727735.CrossRefGoogle Scholar
Li, Y. and Burns, P.C. (2000b) Synthesis and crystal structure of a new Pb uranyl oxide hydrate with a framework structure that contains channels. The Canadian Mineralogist, 38, 14331441.CrossRefGoogle Scholar
Li, Y., Cahill, C.l. and Burns, P.C. (2001a) Synthesis, structural characterization, and topological rearrangement of a novel open framework U–O material: (NH4)3(H2O)2{[(UO2)10O10(OH)][(UO4)(H2O)2]}. Chemistry of Materials, 13, 40264031.CrossRefGoogle Scholar
Li, Y., Krivovichev, S.V. and Burns, P.C. (2001b) Crystal chemistry of lead oxide hydroxide nitrates: II. The crystal structure of Pb13O8(OH)6(NO3)4. Journal of Solid State Chemistry, 158, 7477.CrossRefGoogle Scholar
Liebau, F. (1985) Structural Chemistry of Silicates. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Lima-de-Faria, J. (1978) General chart for inorganic structural units and building units. Garcia de Orta – Série de Geologia, 2, 6976.Google Scholar
Lima-de-Faria, J. (1983) A proposal for a structural classification of minerals. Garcia de Orta – Série de Geologia, 6, 114.Google Scholar
Lima-de-Faria, J. (1994) Structural Mineralogy. Kluwer, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. and Parthé, E. (1990) Nomenclature of inorganic structure types. Acta Crystallographica, A46, 111.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2002a) The crystal structure of triuranyl diphosphate tetrahydrate. Journal of Solid State Chemistry, 163, 275280.CrossRefGoogle Scholar
Locock, A.J. and Burns, P.C. (2002b) Structures and synthesis of framework triuranyl diarsenate hydrates. Journal of Solid State Chemistry, 176, 1826.CrossRefGoogle Scholar
Locock, A.J., Burns, P.C. and Flynn, T.M. (2005) The role of water in the structures of synthetic hallimondite, Pb2[(UO2)(AsO4)2](H2O)n and synthetic parsonsite, Pb2[(UO2)(PO4)2](H2O)n, 04 n 40.5. American Mineralogist, 90, 240246.CrossRefGoogle Scholar
Loopstra, B.O. and Cordfunke, E.H.P. (1966) On the structure of a-UO3 . Recueil des Travaux Chimiques des Pays-Bas, 85, 135142.CrossRefGoogle Scholar
Lussier, A.J. and Hawthorne, F.C. (2011) Short-range constraints on chemical and structural variations in bavenite. Mineralogical Magazine, 75, 213239.CrossRefGoogle Scholar
Lussier, A.J. and Hawthorne, F.C. (2013) Structural isomerism in minerals based on octahedral [[6]MØ4] chains. Geological Association of Canada – Mineralogical Association of Canada Joint Annual Meeting, Program with Abstracts, Volume 36, 133.Google Scholar
Magarill, S.A., Romanenko, G.V., Pervukhina, N.V., Borisov, S.V. and Palchik, N.A. (2000) Oxocentered polycationic complexes – An alternative approach to crystal-chemical investigation of the structure of natural and synthetic mercury oxosalts. Journal of Structural Chemistry, 41, 96105.CrossRefGoogle Scholar
Matchatski, F. (1928) Zur Frage der Struktur und Konstitution der Feldspate. Zentralblatt für Mineralogie Abhandlungen A, 1928, 97104.Google Scholar
Mazzi, F., Ungaretti, L., Dal Negro, A., Petersen, O.V. and Rönsbo, J.G. (1979) The crystal structure of semenovite. American Mineralogist, 64, 202210.Google Scholar
Menchetti, S. and Sabelli, C. (1976) Crystal chemistry of the alunite series: Crystal structure refinement of alunite and synthetic jarosite. Neues Jahrbuch für Mineralogie – Monatshefte, 1976, 406417.Google Scholar
Menchetti, S., Sabelli, C. and Trosti-Ferroni, R. (1982) Probertite, CaNa[B5O7(OH)4]·3H2O: a refinement. Acta Crystallographica, B38, 30723075.CrossRefGoogle Scholar
Mereiter, K. (1972) Die Kristallstruktur des Voltaits, K2Fe2+ 5 Fe3+ 3 Al(SO4)12(H2O)18. Tschermaks Mineralogische und Petrographische Mitteilungen, 18, 185202.CrossRefGoogle Scholar
Mereiter, K. (1974) Die Kristallstruktur von Rhomboklas (H5O2)+(Fe(SO4)2(H2O)2). Tschermaks Mineralogische und Petrographische Mitteilungen, 21, 216232.CrossRefGoogle Scholar
Mereiter, K. (1979) Refinement of the crystal structure of langbeinite K2Mg2(SO4)3 . Neues Jahrbuch für Mineralogie – Monatshefte, 1979, 182188.Google Scholar
Mereiter, K. (1982a) The crystal structure of liebigite, Ca2UO2(CO3)3·11H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 277288.CrossRefGoogle Scholar
Mereiter, K. (1982b) The crystal structure of walpurgite, (UO2)Bi4O4(AsO4 ) 2·2H2O. Tschermaks Mineralogische und Petrographische Mitteilungen, 30, 129139.CrossRefGoogle Scholar
Mereiter, K. (1986) Crystal structure refinements of two francevillites, (Ba,Pb)[(UO2)2V2O8]·5H2O. Neues Jahrbuch für Mineralogie – Monatshefte, 1986, 552–560.Google Scholar
Mereiter, K., Niedermayr, G. and Walter, F. (1994) Uralolite, Ca2Be4(PO4)3(OH)·3.5(H2O) New data and crystal structure. European Journal of Mineralogy, 6, 887896.CrossRefGoogle Scholar
Merlino, S. and Pasero, M. (1992) Crystal chemistry of beryllophosphates: The crystal structure of moraesite, Be2(PO4)(OH)·4H2O. Zeitschrift für Kristallographie, 201, 253262.Google Scholar
Merlino, S. and Sartori, F. (1969) The crystal structure of lardellerite, NH4B5O7(OH)2·2H2O. Acta Crystallographica, B25, 22642270.CrossRefGoogle Scholar
Merlino, S. and Sartori, F. (1971) Ammonioborite: new borate polyion and its structure. Science, 171, 377379.CrossRefGoogle ScholarPubMed
Metcalf, J. and Gronbaek, H.R. (1976) Crystal structure of sørensenite, Na4SnBe2(Si3O9)2(H2O)2. Acta Crystallographica, B32, 25532556.CrossRefGoogle Scholar
Mihalcea, I., Henry, N., Clavier, N., Dacheux, N. and Loiseau, T. (2011) Occurrence of an octanuclear motif of uranyl isophthalate with cation-cation interactions through edge-sharing connection mode. Inorganic Chemistry, 50, 62436249.CrossRefGoogle Scholar
Mikhailov, Yu.N., Gorbunova, Yu.E., Kokh, l.A., Kuznetsov, V.G., Grevtseva, T.G., Sokol, S.K. and Ellert, G.V. (1977) Synthesis and crystal structure of potassium trisulfatouranylate K4(UO2(SO4)3). Koordinatsionnaya Khimiya, 3, 508513.Google Scholar
Mikhailov, Yu.N., Gorbunova, Yu.E., ShiShkina, O.V., Serezhkina, l.B. and Serezhkin, V.N. (2001) Crystal structure of Cs2((UO2)(SeO4)2(H2O))(H2O). Zhurnal Neorganicheskoi Khimii, 46, 18281832.Google Scholar
Miller, M.L., Finch, R.J., Burns, P.B. and Ewing, R.C. (1996) Description and classification of uranium oxide hydrate sheet anion topologies. Journal of Materials Research, 11, 30483056.CrossRefGoogle Scholar
Moore, P.B. (1965) The crystal structure of laueite, MnFe2(OH)2(PO4)2(H2O)6(H2O)2 . American Mineralogist, 50, 18841892.Google Scholar
Moore, P.B. (1966) The crystal structure of metastrengite and its relationship to strengite and phosphophyllite. American Mineralogist, 51, 168176.Google Scholar
Moore, P.B. (1970) Crystal chemistry of the basic iron phosphates. American Mineralogist, 55, 135169.Google Scholar
Moore, P.B. (1973) Pegmatite phosphates: descriptive mineralogy and crystal chemistry. Mineralogical Record, 4, 103130.Google Scholar
Moore, P.B. (1975) Brianite, Na2CaMg[PO4]2: a phosphate analog of merwinite, Ca2CaMg[SiO4]2. American Mineralogist, 60, 717718.Google Scholar
Moore, P.B. and Araki, T. (1972a) Wightmanite, Mg5(O)(OH)5[BO3]·nH2O, a natural drainpipe. Nature Physical Science, 239, 2526.CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1972b) Johachidolite, CaAl[B3O7], a borate with very dense atomic structure. Nature Physical Science, 240, 6365.CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1974a) Pinakiolite, Mg2Mn3+O2[BO3]; warwickite, Mg(Mg0.5Ti0.5) O[BO3]; wightmanite, Mg5(O)(OH)5[BO3]·nH2O: crystal chemistry of complex 3A wallpaper structures. American Mineralogist, 59, 9851004.Google Scholar
Moore, P.B. and Araki, T. (1974b) Jahnsite, CaMnMg2(H2O)8Fe2(OH)2(PO4)4. A novel stereo-isomer of ligands aound octahedral corner-chains. American Mineralogist, 59, 964973.Google Scholar
Moore, P.B. and Araki, T. (1975) Palermoite, SrLi2(Al4(OH)4(PO4). Its atomic arrangement and relationship to carminite, Pb2(Fe4(OH)4(AsO4)4). American Mineralogist, 60, 460465.Google Scholar
Moore, P.B. and Araki, T. (1977a) Overite, segelerite, and jahnsite: a study in combinatorial polymorphism. American Mineralogist, 62, 692702.Google Scholar
Moore, P.B. and Araki, T. (1977b) Mitridatite, Ca6(H2O)6(Fe9O6(PO4)9)(H2O)3. A noteworthy octahedral sheet structure. Mineralogical Magazine, 41, 527528.CrossRefGoogle Scholar
Moore, P.B. and Araki, T. (1983) Surinamite, ca. Mg3Al4Si3BeO16: Its crystal structure and relation to sapphirine, ca. Mg2.8Al7.2Si1.2O16. American Mineralogist, 68, 88048810.Google Scholar
Moore, P.B., Araki, T., Steele, I.M. and Swihart, G.H. (1983) Gainesite, sodium zirconium beryllophosphate: A new mineral and its crystal structure. American Mineralogist, 68, 10221028.Google Scholar
Mueller, M.H., Dalley, N.K. and Simonsen, S.H. (1971) Neutron diffraction study of uranyl nitrate dihydrate. Inorganic Chemistry, 10, 323328.CrossRefGoogle Scholar
Nadezhina, T.N., Pushcharovskii, D.Y., Rastsvetaeva, R.K., Voloshin, A.V. and Burshtein, I.F. (1989) Crystal structure of a new natural form of Be(OH)2 . Doklady Akademii Nauk SSSR, 305, 9598.[in Russian].Google Scholar
Niinistö, l., Toivonen, J. and Valkonen, J. (1978) Uranyl (VI) compounds. I. The crystal structure of ammonium uranyl sulfate di hydrate, (NH4)2UO2(SO4 ) 2·2H2O. Acta Chemica Scandinavica, A32, 647651.CrossRefGoogle Scholar
Obbade, S., Dion, C., Bekaert, E., Yagoubi, S., Saadi, M. and Abraham, F. (2003) Synthesis and crystal structure of new uranyl tungstates M2(UO2)(W2O8) (M = Na, K), M2(UO2)2(WO5)O (M = K, Rb), and Na10(UO2)8(W5O20)O8. Journal of Solid State Chemistry, 172, 305318.CrossRefGoogle Scholar
Pauling, L. (1929) The principles determining the structures of complex ionic crystals. Journal of the American Chemical Society, 51, 10101026.CrossRefGoogle Scholar
Peacor, D.R., Rouse, R.C. and Ahn, J.-H. (1987) Crystal structure of tiptopite, a framework beryllophosphate isotypic with basic cancrinite. American Mineralogist, 72, 816820.Google Scholar
Pekov, I.V., Zelenski, M.E., Yapaskurt, V.O., Polekhovsky, Yu.S. and Murashko, M.N. (2013) Starovaite, KCu5O(VO4)3, a new mineral from fumarole sublimates of the Tolbachik volcano, Kamchatka, Russia. European Journal of Mineralogy, 25, 9196.CrossRefGoogle Scholar
Perrin, A. (1976) Structure cristalline du nitrate de dihydroxo diuranyle tétrahydraté. Acta Crystallographica, B32, 16581661.CrossRefGoogle Scholar
Pertlik, F. and Zemann, J. (1988) The crystal structure of nabokoite, Cu7TeO4(SO4)5·KCl: The first example of a Te(IV)O4 pyramid with exactly tetragonal symmetry. Mineralogy and Petrology, 38, 291298.CrossRefGoogle Scholar
Pilati, T., Demartin, F., Cariati, F., Bruni, S. and Gramaccioli, C.M. (1993) Atomic thermal parameters and thermodynamic functions for chrysoberyl (BeAl2O4) from vibrational spectra and transfer of empirical force fields. Acta Crystallographica, B49, 216222.CrossRefGoogle Scholar
Piret, P., Deliens, M., Piret-Meunier, J. and Germain, G. (1983) La sayrite, Pb2[(UO2)5O6(OH)2]·4H2O, nouveau minéral; propriétés et structure cristalline. Bulletin de la SociétéFrançaise Minéralogie et de Cristallographie 106, 299304.CrossRefGoogle Scholar
Ploetz, K.B. and Muller-Buschbaum, H. (1981) Zur Kristallchemie der Oxoplumbate (II). I. Zur Kenntnis von Pb9Al8O21. Zeitschrift für Anorganische und Allgemeine Chemie, 480, 149152.CrossRefGoogle Scholar
Pring, A., Gatehouse, B.M. and Birch, W.D. (1990) Francisite, Cu3Bi(SeO3)2O2Cl, a new mineral from Iron Monarch, South Australia: Description and crystal structure. American Mineralogist, 75, 14211425.Google Scholar
Pushcharovsky, D.Yu., Lima-de-Faria, J. and Rastsvetaeva, R.K. (1998) Main structural subdivisions and structural formulas of sulfate minerals. Zeitschrift für Kristallographie, 213, 141150.Google Scholar
Rastsvetaeva, R.K. and Pushcharovskii, D.Yu. (1989) Crystal chemistry of sulfates. Itogi Nauki i Tekhniki, Seriya Kristallokhimiya, Vol. 23.Google Scholar
VINITI, Moscow [in Russian]. Rastsvetaeva, R.K., Rekhlova, O.Yu., Andrianov, V.I. and Malinovskii, Yu.A. (1991) Crystal structure of hsianghualite. Doklady Akademii Nauk SSSR, 316, 624628.[in Russian].Google Scholar
Razmanova, P., Rumanova, I.M. and Belov, N.V. (1970) Crystal structure of kurnakovite Mg2B6O11·15H2O = 2Mg[B3O3(OH)5]·5H2O. Soviet Physics Doklady, 14, 11391142.Google Scholar
Riebe, H.J. and Keller, H.L. (1989) Pb13O10Br6, ein neuer Vertreter der Blei (II)oxidhalogenide. Zeitschrift für Anorganische und Allgemeine Chemie, 571, 139147.CrossRefGoogle Scholar
Roberts, A.C., Cooper, M.A., Hawthorne, F.C., Criddle, A.J., Stanley, C.J., Key, C.L. and Jambor, J.L. (1999) Sidpietersite, Pb2+ 4 (S6+O3S2B)O2(OH)2, a new thiosulfate mineral from Tsumeb, Namibia. The Canadian Mineralogist, 37, 12691273.Google Scholar
Ross, V.F. and Edwards, J.O. (1967) The structural chemistry of the borates. Pp. 155–207 in The Chemistry of Boron and its Compounds (E.L. Muetterties, editor), John Wiley, New York.Google Scholar
Rouse, R.C. and Dunn, P.J. (1985) The structure of thorikosite, a naturally occurring member of the bismuth oxyhalide group. Journal of Solid State Chemistry, 57, 389395.CrossRefGoogle Scholar
Rouse, R.C., Peacor, D.R. and Metz, G.W. (1989) Sverigeite, a structure containing planar NaO4 groups and chains of 3- and 4-membered beryllosilicate rings. American Mineralogist, 74, 13431350.Google Scholar
Rouse, R.C., Peacor, D.R., Dunn, P.J., Su, S.-C., Chi, P.H. and Yeates, H. (1994) Samfowlerite, a new CaMnZn beryllosilicate mineral from Franklin, New Jersey: Its characterization and crystal structure. The Canadian Mineralogist, 32, 4353.Google Scholar
Saadi, M., Dion, C. and Abraham, F. (2000) Synthesis and crystal structure of the pentahydrated uranyl orthovanadate (UO2)3(VO4)2·5H2O, precursor for the new (UO2)3(VO4)2 uranyl-vanadate. Journal of Solid State Chemistry, 150, 7280.CrossRefGoogle Scholar
Sabelli, C. and Ferroni, T. (1978) The crystal structure of aluminite. Acta Crystallographica, B34, 24072412.CrossRefGoogle Scholar
Sabelli, C. and Trosti-Ferroni, T. (1985) A structural classification of sulfate minerals. Periodico di Mineralogia, 54, 146.Google Scholar
Sahl, K. (1975) Zur Kristallstruktur von 4PbO·PbSO4 . Zeitschrift für Kristallographie, 132, 99117.CrossRefGoogle Scholar
Sandomirskii, P.A. and Belov, N.V. (1984) Crystal Chemistry of Mixed Anionic Radicals. Nauka, Moscow. [in Russian].Google Scholar
Schindler, M. and Hawthorne, F.C. (2001a) A bondvalence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: I. Theory. The Canadian Mineralogist, 39, 12251242.CrossRefGoogle Scholar
Schindler, M. and Hawthorne, F.C. (2001b) A bondvalence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: II. Crystal structure and chemical composition of borate minerals. The Canadian Mineralogist, 39, 12431256.CrossRefGoogle Scholar
Schindler, M. and Hawthorne, F.C. (2001c) A bondvalence approach to the structure, chemistry and paragenesis of hydroxy-hydrated oxysalt minerals: III. Paragenesis of borate minerals. The Canadian Mineralogist, 39, 12571274.CrossRefGoogle Scholar
Schindler, M. and Hawthorne, F.C. (2004) A bondvalence approach to the uranyl-oxide hydroxyhydrate minerals: Chemical composition and occurrence. The Canadian Mineralogist, 42, 16011627.CrossRefGoogle Scholar
Schindler, M. and Hawthorne, F.C. (2008) The stereochemistry and chemical composition of interstitial complexes in uranyl-oxysalt minerals. The Canadian Mineralogist, 46, 467501.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C. and Baur, W.H. (2000) A crystal-chemical approach to the composition and occurrence of vanadium minerals. The Canadian Mineralogist, 38, 14431456.CrossRefGoogle Scholar
Schindler, M., Mutter, A., Hawthorne, F.C. and Putnis, A. (2004a) Prediction of crystal morphology of complex uranyl-sheet minerals. I. Theory. The Canadian Mineralogist, 42, 16291649.CrossRefGoogle Scholar
Schindler, M., Mutter, A., Hawthorne, F.C. and Putnis, A. (2004b) Prediction of crystal morphology of complex uranyl-sheet minerals. II. Observation. The Canadian Mineralogist, 42, 16511666.CrossRefGoogle Scholar
Schindler, M., Huminicki, D.M.C. and Hawthorne, F.C. (2006a) Sulfate minerals: I. Bond topology and chemical composition. The Canadian Mineralogist, 44, 14031429.CrossRefGoogle Scholar
Schindler, M., Mandaliev, P., Hawthorne, F.C. and Putnis, A. (2006b) Dissolution of uranyl-oxidehydroxy- hydrate minerals: I. Curite. The Canadian Mineralogist, 44, 415431.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Burns, P.C. and Maurice, P.A. (2006c) Dissolution of uranyl-oxidehydroxy- hydrate minerals: II. Becquerelite. The Canadian Mineralogist, 44, 12071225.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Halden, N.M., Burns, P.C. and Maurice, P.A. (2007a) Dissolution of uranyl-oxide-hydroxy-hydrate minerals: III. Billietite. The Canadian Mineralogist, 45, 945962.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Burns, P.C. and Maurice, P.A. (2007b) Dissolution of uranyl-oxidehydroxy- hydrate minerals: IV. Fourmarierite and synthetic Pb2(H2O)[(UO2)10UO12(OH)6(H2O)2]. The Canadian Mineralogist, 45, 963981.CrossRefGoogle Scholar
Schindler, M., Freund, M., Hawthorne, F.C., Burns, P.C. and Maurice, P.A. (2009) Dissolution of uranophane: an AFM, XPS, SEM and ICP study. Geochimica et Cosmochimica Acta, 73, 25102533.CrossRefGoogle Scholar
Schindler, M., Hawthorne, F.C., Mandaliev, P., Burns, P.C. and Maurice, P.A. (2011) An integrated study of uranyl mineral dissolution processes: etch pit formation, effects of cations in solution, and secondary precipitation. Radiochimica Acta 99, 7994.CrossRefGoogle Scholar
Scordari, F. (1977) The crystal structure of ferrinatrite, Na3(H2O)3(Fe(SO4)3) and its relationship to Maus’s salt, (H3O)2K2(K0.5(H2O)0.5)6(Fe3O(H2O)3(SO4)6) (OH)2 . Mineralogical Magazine, 41, 375383.CrossRefGoogle Scholar
Scordari, F. (1981a) Fibroferrite: a mineral with a (Fe(OH)(H2O)2(SO4)) spiral chain and its relationship to Fe(OH)(SO4), butlerite and parabutlerite. Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 1729.CrossRefGoogle Scholar
Scordari, F. (1981b) Sideronatrite: a mineral with a (Fe2(SO4)4(OH)2) guildite type chain? Tschermaks Mineralogische und Petrographische Mitteilungen, 28, 315319.CrossRefGoogle Scholar
Scordari, F. and Stasi, F. (1990) The crystal structure of euchlorine, NaKCu3O(SO4)3 . Neues Jahrbuch für Mineralogie – Monatshefte, 1990, 241253.Google Scholar
Scordari, F., Stasi, F., Schingaro, E. and Comunale, G. (1994) Analysis of the (Na1/3(H2O)2/3)12 (NaFe3+ 3 O(SO4)6(H2O)3) compound: Crystal structure, solid-state transformation and its relationship to some analogues. Zeitschrift für Kristallographie, 209, 4348.Google Scholar
Selway, J.B., Cooper, M.A. and Hawthorne, F.C. (1997) Refinement of the crystal structure of burangaite. The Canadian Mineralogist, 35, 15151522.Google Scholar
Semenova, T.F., Rozhdestvenskaya, I.V., Filatov, S.K. and Vergasova, L.P. (1989) Crystal structure of the new mineral ponomarevite, K4Cu4OCl10. Doklady Akademii Nauk SSSR, 304, 427430.Google Scholar
Shannon, R.D. and Calvo, C. (1973) Crystal structure of Cu5V2O10. Acta Crystallographica, B29, 13381345.CrossRefGoogle Scholar
Shashkin, D.P., Lur’e, E.A. and Belov, N.V. (1974) Crystal-structure of Na2 [(UO2)SiO4]. Kristallografiya, 19, 958963.[in Russian].Google Scholar
Shuvalov, R.R. and Burns, P.C. (2003) A monoclinic polymorph of uranyl dinitrate trihydrate, [(UO2)(NO3)2(H2O)2]·(H2O). Acta Crystallographica, C59, i71–i73.Google Scholar
Shuvalov, R.R., Vergasova, L.P., Semenova, T.F., Filatov, S.K., Krivovichev, S.V., Siidra, O.I. and Rudashevsky, N.S. (2013) Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: Description and crystal structure. American Mineralogist, 98, 463469.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Armbruster, T. and Depmeier, W. (2007) Crystal chemistry of natural and synthetic lead oxyhalides. Part I. Crystal structure of Pb13O10Cl6. Geology of Ore Deposits, 49, 827834.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V. and Filatov, S.K. (2008a) Minerals and synthetic Pb(II) compounds with oxocentered tetrahedra: review and classification. Zeitschrift für Kristallographie, 223, 114125.Google Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R.W. and Rumsey, M.S. (2008b ) Chloroxiphite Pb3CuO2(OH)2Cl2: structure refinement and description in terms of oxocentred OPb4 tetrahedra. Mineralogical Magazine, 72, 793798.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R.W., Rumsey, M.S. and Spratt, J. (2013) Crystal chemistry of layered Pb oxychloride minerals with PbO-related structures: Part I. Crystal structure of hereroite, [Pb32O20(O,□)](AsO4)2[(Si,As,V,Mo)O4]2Cl10. American Mineralogist, 98, 248255.CrossRefGoogle Scholar
Simonov, M.A., Yamanova, N.A., Mzanskaya, E.Y., Egorovi Tismenko, Y.K. and Belov, N.Y. (1976a) Crystal structure of a new natural calcium borate, hexahydroborite CaB204·6H2O = Ca[B(OH)]2·2H20. Soviet Physics Doklady, 21, 314316.Google Scholar
Simonov, M.A., Egorov-Tismenko, Yu.K. and Belov, N.Y. (1976b) Refined crystal structure of vimsite Ca(B2O2(OH)4). Soviet Physics Crystallography, 21, 332333.Google Scholar
Simonov, M.A., Egorov-Tismenko, Y.K. and Belov, N.V. (1977) Accurate crystal structure of uralborite Ca2[B4O4(OH)8]. Soviet Physics Doklady, 22, 277279.Google Scholar
Simonov, M.A., Kazanskaya, E.Y., Belokoneva, E.L. and Belov, N.Y. (1978) Hydrogen bonds in the crystal structure of nifontovite Ca2[B2O3(OH)6] ·2H2O. Soviet Physics Doklady, 23, 159161.Google Scholar
Stålhandske, C., Aurivillius, K. and Bertinsson, G.I. (1985) Structure of mercury (I, II) iodide oxide, Hg2OI. Acta Crystallographica, C41, 167168.Google Scholar
Starova, G.L., Filatov, S.K., Fundamenskii, V.S. and Vergasova, L.P. (1991) The crystal structure of fedotovite, K2Cu3O(SO4)3 . Mineralogical Magazine, 55, 613616.CrossRefGoogle Scholar
Starova, G.L., Krivovichev, S.V., Fundamenskii, V.S. and Filatov, S.K. (1997) The crystal structure of averievite, Cu5O2(VO4)2.nMX; comparison with related compounds. Mineralogical Magazine, 61, 441446.CrossRefGoogle Scholar
Starova, G.L., Krivovichev, S.V. and Filatov, S.K. (1998) Crystal chemistry of inorganic compounds based on chains of oxocentered tetrahedra: II. Crystal structure of Cu4O2[(As,V)O4]Cl1. Zeitschrift für Kristallographie, 213, 650653.Google Scholar
Sterns, M., Parise, J.B. and Howard, C.J. (1986) Refinement of the structure of trilead (II) uranate (VI) from neutron powder diffraction data. Acta Crystallographica, 42, 12751277.Google Scholar
Street, R.L.T. and Whitaker, A. (1973) The isostructurality of rosslerite and phosphorosslerite. Zeitschrift für Kristallographie, 137, 246255.Google Scholar
Süsse, P. (1967) Crystal structure of amarantite. Naturwissenschaften, 54, 642643.CrossRefGoogle Scholar
Süsse, P. (1968) Die Kristallstruktur des Botryogens. Acta Crystallographica, B24, 760767.CrossRefGoogle Scholar
Süsse, P. (1973) Slavikit: Kristallstruktur und chemische Formel. Neues Jahrbuch für Mineralogie – Monatshefte, 1973, 9395.Google Scholar
Swihart, G.H., Gupta, P.K.S., Schlemper, E.O., Back, M.E. and Gaines, R.V. (1993) The crystal structure of moctezumite [PbUO2](TeO3)2 . American Mineralogist, 78, 835839.Google Scholar
Switzer, G., Foshag, W.F., Murata, K.J. and Fahey, J.J. (1953) Re-examination of mosesite. American Mineralogist, 38, 12251234.Google Scholar
Sykora, R.E., Mcdaniel, S.M., Wells, D.M. and Albrecht-Schmitt, T.E. (2002) Mixed-metal uranium(VI) iodates: hydrothermal syntheses, structures, and reactivity of Rb[UO2(CrO4)(IO3)(H2O)], A2[UO2(CrO4)(IO3)2] (A = K, Rb, Cs), and K2[UO2(MoO4)(IO3)2]. Inorganic Chemistry, 41, 51265132.CrossRefGoogle Scholar
Sykora, R.E. King, J.E., Illies, A.J. and Albrecht-Schmitt, T.E. (2004) Hydrothermal synthesis, structure, and catalytic properties of UO2Sb2O4 . Journal of Solid State Chemistry, 177, 17171722.CrossRefGoogle Scholar
Symanski, J.T. and Groat, L.A. (1997) The crystal structure of deanesmithite, Hg1+ 2 Hg2+ 3 Cr6+O5S2. The Canadian Mineralogist, 35, 765772.Google Scholar
Tabachenko, V.V., Kovba, L.M. and Serezhkin, V.N. (1983) The crystal structure of molybdatouranylates of magnesium and zinc of composition M(UO2)3(MoO4)4(H2O)8 (M = Mg,Zn). Koordinatsionnaya Khimiya, 9, 15681571.[in Russian].Google Scholar
Tachez, M., Theobald, F., Watson, K.J. and Mercier, R. (1979) Redetermination de la structure du sulfate de vanadyle pentahydrate VOSO4(H2O)5. Acta Crystallographica, B35, 15451550.CrossRefGoogle Scholar
Takéuchi, Y. (1952) The crystal structure of magnesium pyroborate. Acta Crystallographica, 5, 574581.CrossRefGoogle Scholar
Takéuchi, Y. and Kudoh, Y. (1975) Szaibélyite, Mg2(OH)[B2O4(OH)]: crystal structure, pseudosymmetry, and polymorphism. American Mineralogist, 60, 273279.Google Scholar
Tennyson, C. (1963) Eine Systematik der Borate auf Kristallchemischer Grundlage. Fortschritte der Mineralogie, 41, 6491.Google Scholar
Tsirel’son, V.G., Sokolova, Y.V. and Urusov, V.S. (1986) An X-ray diffraction study of the electron-density distribution and electrostatic potential in phenakite Be2SiO4 . Geokhimiya, 8, 11701180.[in Russian].Google Scholar
Tulsky, E.G. and Long, J.R. (2001) Dimensional reduction: A practical formalism for manipulating solid structures. Chemistry of Materials, 13, 11491166.CrossRefGoogle Scholar
Varaksina, T.V., Fundamenskii, V.S., Filatov, S.K. and Vergasova, L.P. (1990) The crystal structure of kamchatkite, a new naturally occurring oxychloride sulphate of potassium and copper. Mineralogical Magazine, 54, 613616.CrossRefGoogle Scholar
Vasil’ev, V.I., Pervukhina, N.V., Romanenko, G.V., Magarill, S.A. and Borisov, S.V. 1999) New data on the mercury oxide-chloride mineral poyarkovite: The second find, and crystal-structure determination. The Canadian Mineralogist, 37, 119126.Google Scholar
Voronkov, A.A., Sizova, R.G., Ilyukhin, V.V. and Belov, N.V. (1973) Crystal chemistry of mixed anionic frameworks. I. Alkaline sorosilicates of zirconium and scandium. Kristallografiya, 18, 112121.Google Scholar
Voronkov, A.A., Ilyukhin, V.V. and Belov, N.V. (1974) Principles of the formation of mixed frameworks and their formula. Doklady Akademii Nauk SSSR, 219, 600603.Google Scholar
Voronkov, A.A., Ilyukhin, V.V. and Belov, N.V. (1975) Basic microblocks of mixed frameworks. Koordinatsionnaya Khimiya, 1(2), 244247.Google Scholar
Wan, C. and Ghose, S. (1977) Hungchaoite, Mg(H2O)5B4O5(OH)4·2H2O: a hydrogen-bonded molecular complex. American Mineralogist, 62, 11351143.Google Scholar
Wan, C., Ghose, S. and Rossman, G.R. (1978) Guildite, a layer structure with a ferric hydroxy-sulphate chain and its optical absorption spectra. American Mineralogist, 63, 478483.Google Scholar
Wang, X., Huang, J., Liu, l. and Jacobson, A.J. (2002) The novel open-framework uranium silicates Na2(UO2)(Si4O10)·2.1(H2O) (USH–1) and RbNa(UO2)(Si2O6)·(H2O) (USH–3). Journal of Materials Chemistry, 12, 406410.CrossRefGoogle Scholar
Warner, J.K., Cheetham, A.K., Nord, A.G., von Dreele, R.B. and Yethiraj, M. (1992) Magnetic structure of iron(II) phosphate, sarcopside, Fe3(PO4)2 . Journal of Materials Chemistry, 2, 191196.CrossRefGoogle Scholar
Weil, M. (2001) Schuetteite, Hg3(SO4)O2, a reinvestigation. Acta Crystallographica, E57, 98100.Google Scholar
Weil, M. (2004) Preparation and Crystal Structure analyses of compounds in the systems HgO/MXO4 H2O (M= Co, Zn, Cd; X= S, Se). Zeitschrift für Anorganische und Allgemeine Chemie, 630, 921927.CrossRefGoogle Scholar
Weil, M. (2005) Crystal Structure of the mixed-valent basic mercury nitrate HgI 2(NO3)2·HgII(OH)(NO3) ·HgII(NO3)2·4HgIIO [= Hg8 O4(OH)(NO3)5]. Zeitschrift für Anorganische und Allgemeine Chemie, 631, 13461348.CrossRefGoogle Scholar
Weil, M. and Glaum, R. (2001) Mercury phosphates with the triangular Hg4+ 3 cluster: (Hg3)3(PO4)4 and (Hg3)2(HgO2)(PO4)2 . Journal of Solid State Chemistry, 1579, 6875.CrossRefGoogle Scholar
Weil, M. and Stoeger, B. (2006) The mercury chromates Hg6Cr2O9 and Hg6Cr2O10 – Preparation and crystal structures, and thermal behaviour of Hg6Cr2O9. Journal of Solid State Chemistry, 179, 24792486.CrossRefGoogle Scholar
Welch, M.D. (2004) Pb-Si ordering in sheet-oxychloride minerals: the super-structure of asisite, nominally Pb7SiO8Cl2. Mineralogical Magazine, 68, 247254.CrossRefGoogle Scholar
Welch, M.D., Cooper, M.A., Hawthorne, F.C. and Criddle, A.J. (2000) Symesite, Pb10(SO4)O7Cl4 (H2O), a new PbO-related sheet mineral: description and crystal structure. American Mineralogist, 85, 15261533.CrossRefGoogle Scholar
Wildner, M. and Giester, G. (1988) Crystal structure refinements of synthetic chalcocyanite (CuSO4) and zincosite (ZnSO4). Mineralogy and Petrology, 39, 201209.CrossRefGoogle Scholar
Williams, S.A., McLean, W.J. and Anthony, J.W. (1970) A study of phoenicochroite – its structure and properties. American Mineralogist, 55, 784792.Google Scholar
Wilson, R.J. (1979) Introduction to Graph Theory. Longman, London.Google Scholar
Wolf, R. and Hoppe, R. (1986) Neues über Oxouranate (VI): Na4UO5 und K4UO5 . Revue de Chimie Minérale, 23, 828848.Google Scholar
Yakubovich, O.V., Matvienko, E.N., Voloshin, A.V. and Simonov, M.A. (1983) The crystal structure of hingganite-(Yb), (Y0.51Ln0.36Ca0.13) Fe0.065Be(SiO4)(OH). Kristallografiya, 28, 457460.[in Russian].Google Scholar
Yu, H., Pan, S., Wu, H., Zhao, W., Zhang, F., Li, H. and Yang, Z. (2012) A new congruent-melting oxyborate, Pb4O(BO3)2 with optimally aligned BO3 triangles adopting layered-type arrangement. Journal of Materials Chemistry, 22, 21052110.CrossRefGoogle Scholar
Zahrobsky, R.F. and Baur, W.H. (1968) On the crystal chemistry of salt hydrates. V. The determination of the crystal structure of CuSO4·3H2O (bonattite). Acta Crystallographica, B24, 508513.CrossRefGoogle Scholar
Zelenski, M.E., Zubkova, N.V., Pekov, I.V., Polekhovsky, Yu.S. and Pushcharovsky, D.Yu. (2012) Cupromolybdite, Cu3O(MoO4)2, a new fumarolic mineral from the Tolbachik volcano, Kamchatka Peninsula, Russia. European Journal of Mineralogy, 24, 749757.CrossRefGoogle Scholar
Zoltai, T. (1960) Classification of silicates and other minerals with tetrahedral structures. American Mineralogist, 45, 960973.Google Scholar