Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T00:26:26.611Z Has data issue: false hasContentIssue false

Stabilities of byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, and their possible roles in limiting antimony mobility in the supergene zone

Published online by Cambridge University Press:  02 January 2018

Adam J. Roper
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2751, Australia
Peter Leverett
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2751, Australia
Timothy D. Murphy
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2751, Australia
Peter A. Williams*
Affiliation:
School of Science and Health, University of Western Sydney, Locked Bag 1797, Penrith, New South Wales 2751, Australia
*

Abstract

In order to clarify the roles that secondary minerals may have in determining the extent of dispersion of Sb in the supergene environment, syntheses and stability studies of the Sb(V) oxides byströmite, MgSb2O6, ordoñezite, ZnSb2O6 and rosiaite, PbSb2O6, have been undertaken. Solubilities in aqueous HNO3 were determined at 298.2 K and the data obtained used to calculate values of Δ at the same temperature. The derived Δ(s, 298.2 K) values for MgSb2O6 (–1554.1 ±3.6 kJ mol–1), ZnSb2O6 (–1257.0 ±2.6 kJ mol–1) and PbSb2O6 (–1154.2 ±2.6 kJ mol–1) have been used in subsequent calculations to determine their relative stabilities and relationships with other secondary Sb minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Accornero, M., Marini, L. and Lelli, M. (2008) The dissociation constant of antimonic acid at 10-40. C. Journal of Solution Chemistry, 37, 785800.CrossRefGoogle Scholar
Baes, C.F., Jr and Mesmer, R.E. (1976) The Hydrolysis of Cations. Wiley Interscience, New York. Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1996) Rosiaite, PbSb2O6, a new mineral from the Cetine mine, Siena, Italy. European Journal of Mineralogy, 8, 487492.Google Scholar
Blass, G. and Graf, H.W. (1997) Neue Mineralienfunde und Bestimmungen. Mineralien Welt, 8(2), 1619.Google Scholar
Byström, A., Hök, B. and Mason, B. (1941) The crystal structure of zinc metantimonate and similar compounds. Arkiv for Kemi, Mineralogi och Geologi, 15B, 18.Google Scholar
Courtin-Nomade, A., Rakotoarisoa, O., Bril, H., Grybos, M., Forestier, L., Foucher, F. and Kunz, M. (2012) Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity. Chemie der Erde-Geochemistry, 72 (sup. 4), 2939.CrossRefGoogle Scholar
Cox, J.D., Wagman, D.D. and Medvedev, V.A. (1989) CODATA Key Values for Thermodynamics. Hemisphere Press, New York. Diemar, G.A., Filella, M., Leverett, P. and Williams, P.A. (2009) Dispersion of antimony from oxidizing ore deposits. Pure and Applied Chemistry, 81, 15471553.Google Scholar
Dondi, M., Palenzona, A. and Puggioli, G. (1995) La mine de Mt Avanza, Forni Avoltri (Udine). Rivista Mineralogica Italiana, 19, 125136.Google Scholar
Ercit, T.S., Foord, E.E. and Fitzpatrick, J.J. (2002) Ordon˜ezite from the Theodoso Soto mine, Sapioris, Durango, Mexico: new data and structure refinement. The Canadian Mineralogist, 40, 12071210.CrossRefGoogle Scholar
Filella, M. and May, P.M. (2003) Computer simulation of the low-molecular-weight inorganic species distribution of antimony(III) and antimony(V) in natural waters. Geochimica et Cosmochimica Acta, 67, 40134031.CrossRefGoogle Scholar
Filella, M. and Williams, P.A. (2012) Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of binding data for homologous compounds. Chemie der Erde, 72, 4965.CrossRefGoogle Scholar
Filella, M., Belzile, N. and Chen, Y.-W. (2002a) Antimony in the environment: a review focused on natural waters I. Occurrence. Earth Science Reviews 57, 125176.CrossRefGoogle Scholar
Filella, M., Belzile, N. and Chen, Y.-W. (2002b) Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry. Earth Science Reviews, 59, 265285.CrossRefGoogle Scholar
Filella, M., Williams, P.A. and Belzile, N. (2009) Antimony in the environment: knowns and unknowns. Environmental Chemistry, 6, 95105.CrossRefGoogle Scholar
Friedrich, A., Mazzi, F. Wildner, M. and Tillmanns, E. (2003) Addendum: isotypism of Co(H2O)6 [Sb(OH)6]2 with brandholzite and bottinoite. American Mineralogist, 88, 462463.Google Scholar
Hill, R.J. (1987) Structure of PbSb2O6 and its relationship to the crystal chemistry of PbO2 in antimonial lead-acid batteries. Journal of Solid State Chemistry, 71, 1218.CrossRefGoogle Scholar
Kasenov, B.K., Mukhanova, M.A., Kasenova, S.B. and Mustafin, E.S. (1996) The thermodynamic properties of the alkaline-earth metal antimonates. Russian Journal of Physical Chemistry, 70, 1820.Google Scholar
Langford, J.I. (1973) Least-squares refinement of cell dimensions from powder data by Cohen’s method. Journal of Applied Crystallography, 6, 190196.CrossRefGoogle Scholar
Leverett, P., Reynolds, J.K., Roper, A.J. and Williams, P.A. (2012) Tripuhyite and schafarzikite: two of the ultimate sinks for antimony in the natural environment. Mineralogical Magazine, 76, 891902.CrossRefGoogle Scholar
Mason, B. and Vitaliano, C.J. (1952) Byströmite, magnesium antimonate, a new mineral. American Mineralogist, 37, 5357.Google Scholar
Majzlan, J., Lalinská, B., Chovan, M., Bläss, U., Brecht, B., Göttlicher, J., Steininger, R., Hug, K., Ziegler, S. and Gescher, J. (2011) A mineralogical, geochemical, and microbiogical assessment of the antimonyand arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. American Mineralogist, 96, 113.CrossRefGoogle Scholar
Meier, S. (1995) Mineralfundstellen im Fichtelgebirge. Eigenverlag, Marktredwitz, Germany. Meli, R. (1999) I minerali delle discariche e delle scorie del Fosso del Tafone (Grosseto). Rivista Mineralogica Italiana, 23, 187191.Google Scholar
Mitsunobu, S., Takahashi, Y., Terada, Y. and Sakata, M. (2010) Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environmental Science & Technology, 44, 37123718.CrossRefGoogle ScholarPubMed
Mitsunobu, S., Takahashi, Y., Utsunomiya, S., Matthew, A.M., Terada, Y., Iwamura, T. and Sakata, M. (2011) Identification and characterization nanosized tripuhyite in soil near Sb mine tailing. American Mineralogist, 96, 1171–118.CrossRefGoogle Scholar
Mitsunobu, S., Muramatsu, C., Watanabe, K. and Sakata, M. (2013) Behavior of antimony(V) during the transformation of ferrihydrite and its environmental implications. Environmental Science & Technology, 47, 96609667.CrossRefGoogle ScholarPubMed
Northrop, S.A. (1996) Minerals of New Mexico, third edition, revised by F.A. LaBruzza. University of New Mexico Press, Albuquerque, USA. Parker, V.B. and Khodakovskii, I.L. (1995) Thermodynamic properties of the aqueous ions (2+ and 3+) of iron and the key compounds of iron. Journal of Physical and Chemical Reference Data, 24, 16991745.Google Scholar
Pawlowski, D. (1991) Mineralfundstellen im Sauerland. Weise Verlag, Munich, Germany. Perrin, D.D. and Sayce, I.G. (1967) Computer calculation of equilibrium concentrations in mixtures of metal ions and complexing species. Talanta, 14, 833842.Google Scholar
Roper, A.J., Williams, P.A. and Fillela, M. (2012) Secondary antimony minerals: Phases that control the dispersion of antimony in the supergene zone. Chemie der Erde, 72S4, 914.CrossRefGoogle Scholar
Ryback, G. and Francis, J.G. (2001) Rosiaite from Bwlch mine, Deganwy, Conwy, Wales. Journal of the Russell Society, 7, 88.Google Scholar
Schmutz, L., Bachmann, A., Eichin, R., Rüegg, H.-R. and Vogel, C. (1986) Antimonmineralien aus dem Malcantone-Tal. Vorkommen und Ausbildung. Schweizer Strahler, 7, 249289.Google Scholar
Schnorrer-Köhler, G. (1986) Neue Minerale von der Schlackenhalde der ehemaligen Zinkhütte Genna in Letmathe/Sauerland. Aufschluss, 37(2), 5567.Google Scholar
Sejkora, J., Ozdín, D., Vitáloš, J., Tuček, P., Čejka, J. and Ďud’a, R. (2007) Schafarzikite from the type locality Pernek (Malé Karpaty Mountains, Slovak Republic) revisited. European Journal of Mineralogy, 19, 419427.CrossRefGoogle Scholar
Smith, R.M. and Martell, A.E. (1976) Critical Stability Constants. Volume 4. Inorganic Complexes. Plenum Press, New York. Switzer, G. and Foshag, W.F. (1955) Ordoñezite, zinc antimonate, a new mineral from Guanajuato, Mexico. American Mineralogist, 40, 6469.Google Scholar
Vajdak, J. (2008) New mineral finds in 2007. Mineral News, 24, 1415.Google Scholar