Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T11:10:40.819Z Has data issue: false hasContentIssue false

Spessartine in compact-hematite rock, southern Serra do Espinhaço, Minas Gerais, Brazil, and genesis of compact hematite

Published online by Cambridge University Press:  05 July 2018

A. R. Cabral*
Affiliation:
Mineral Deposits, Technische Universität Clausthal, Adolph-Roemer-Strasse 2A, D-38678 Clausthal-Zellerfeld, Germany
M. Tupinambá
Affiliation:
Tektos-Geotectonic Research Group, Faculdade de Geologia, Universidade do Estado do Rio de Janeiro, Rua S. Francisco Xavier 524 s. A4016, 20550-050 Rio Janeiro-RJ, Brazil
B. Lehmann
Affiliation:
Mineral Deposits, Technische Universität Clausthal, Adolph-Roemer-Strasse 2A, D-38678 Clausthal-Zellerfeld, Germany
*

Abstract

Fine-grained garnet (grains <50 μm across) is an accessory component of compact hematite, a rock consisting essentially of hematite; compact hematite is a variety of high-grade Fe ore. The garnet is characterized compositionally as spessartine (81–86 mol.%) with subordinate, but significant, amounts of calderite (5–11 mol.%) and “blythite” (up to ∼5 mol.%), as well as andradite (4–7 mol.%); pyrope and almandine endmembers are ≤∼2 and 1 mol.%, respectively. The recognition of spessartine in compact hematite indicates that oxidation state, rather than whole-rock chemical composition, controlled the garnet composition. The spessartine has a positive Eu anomaly, and a low Th/U ratio (0.13–0.65) compared to the average upper continental crust, Th/U = 3.9, as well as a positive linear correlation of U vs. Li. The spessartine-hosting compact-hematite rock is a high-grade hematite ore that similarly shows a low Th/U ratio, but a convex, tetrad-like segment between Gd and Dy. Decoupling of Eu from other rare-earth elements and of U from Th in the spessartine, together with the anomalous geochemical behaviour of Gd, Tb and Dy in the compact hematite, and its low Th/U ratio, could have been achieved under oxidizing conditions at greenschist-facies metamorphic temperatures. The U and Li present in the spessartine could have been sourced from metamorphic fluids of continental, possibly evaporitic, origin. These interpretations are underpinned by the regional hematitization and tourmalinization observed in the southern Serra do Espinhaço.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Almeida-Abreu, P.A. and Renger, F.E. (2002) Serra do Espinhaço meridional: um orógeno de colisa˜o do Mesoproterozó ico. Revista Brasileira de Geociências, 32, 114.CrossRefGoogle Scholar
Almeida-Abreu, P.A. and Renger, F.E. (2007) Stratigraphy and facies of the southern Serra do Espinhaço, Minas Gerais, Brazil. Zeitschrift der deutschen Gesellschaft für Geowissenschaften, 158, 929.CrossRefGoogle Scholar
Almeida-Abreu, P.A., Knauer, L.G., Hartmann, M.B., Vieira dos Santos, G.G., Guimara˜es, M.L.V., de Abreu, F.R., Schrank, A. and Pflug, R. (1989) Estratigrafia, faciologia e tectônica do Supergrupo Espinhaço na regia˜o de Serro – Conceiça˜o do Mato Dentro, Minas Gerais, Brasil. Zentralblatt für Geologie und Paläontologie, Teil I, 1989, 857873.Google Scholar
Bau, M. (1991) Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium. Chemical Geology, 93, 219230.CrossRefGoogle Scholar
Bau, M. (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contributions to Mineralogy and Petrology, 123, 323333.CrossRefGoogle Scholar
Bau, M. and Alexander, B.W. (2009) Distribution of high field strength elements (Y,, Zr,, REE,, Hf,, Ta,, Th,, U) in adjacent magnetite and chert bands and in reference standards FeR-3 and FeR-4 from the Temagami iron-formation, Canada, and the redox level of the Neoarchean ocean. Precambrian Research, 174, 337346.CrossRefGoogle Scholar
Bau, M. and Dulski, P. (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Research, 79, 3755.CrossRefGoogle Scholar
Boiron, M.-C., Moissette, A., Cathelineau, M., Banks, D., Monnin, C. and Dubessy, J. (1999) Detailed determination of palaeofluid chemistry: an integrated study of sulphate-volatile rich brines and aquocarbonic fluids in quartz veins from Ouro Fino (Brazil). Chemical Geology, 154, 179192.CrossRefGoogle Scholar
Bolhar, R., Kamber, B.S., Moorbath, S., Fedo, C.M. and Whitehouse, M.J. (2004) Characterisation of early Archaean chemical sediments by trace element signatures. Earth and Planetary Science Letters, 222, 4360.CrossRefGoogle Scholar
Bryndzia, L.T. and Scott, S.D. (1987) The composition of chlorite as a function of sulfur and oxygen fugacity: an experimental study. American Journal of Science, 287, 5076.CrossRefGoogle Scholar
Cabral, A.R. (2003) Spessartine-tourmaline-bearing manganiferous itabirite at Miguel Congo: petrographic evidence for a Mn-rich meta-exhalite in the Quadrilátero Ferrífero of Minas Gerais, Brazil. Applied Earth Science (Transactions of the Institutions of Mining and Metallurgy B), 112, 313318.CrossRefGoogle Scholar
Cabral, A.R. and Moore, J.M. (2012) Negative cerium anomaly in spessartine garnet from a barite-rich rock, Otjosondu ferromanganese deposit, Namibia: the fingerprint of oxic sea water. South African Journal of Geology, 115, 589596.CrossRefGoogle Scholar
Cabral, A.R., Lehmann, B., Tupinambá, M., Schlosser, S., Kwitko-Ribeiro, R. and de Abreu, F.R. (2009) The platiniferous Au-Pd belt of Minas Gerais, Brazil, and genesis of its botryoidal Pt-Pd-Hg aggregates. Economic Geology, 104, 12651276.CrossRefGoogle Scholar
Cabral, A.R., Lehmann, B., Tupinambá , M., Wiedenbeck, M. and Brauns, M. (2011) Geology, mineral chemistry and tourmaline B isotopes of the Có rrego Bom Sucesso area, southern Serra do Espinhaço, Minas Gerais, Brazil: implications for Au-Pd-Pt exploration in quartzitic terrain. Journal of Geochemical Exploration, 110, 260277.CrossRefGoogle Scholar
Cabral, A.R., Wiedenbeck, M., Koglin, N., Lehmann, B. and de Abreu, F.R. (2012) Boron-isotopic constraints on the petrogenesis of hematitic phyllite in the southern Serra do Espinhaço, Minas Gerais, Brazil. Lithos, 140–141. 224233.Google Scholar
Cabral, A.R., Eugster, O., Brauns, M., Lehmann, B., Rösel, D., Zack, T., de Abreu, F.R., Pernicka, E. and Barth, M. (2013a) Direct dating of gold by radiogenic helium: testing the method on gold from Diamantina, Minas Gerais, Brazil. Geology, 41, 163166.CrossRefGoogle Scholar
Cabral, A.R., Creaser, R.A., Nägler, T., Lehmann, B., Voegelin, A.R., Belyatsky, B., Pašava, J., Seabra Gomes Jr., A.A., Galbiatti, H.F., Böttcher, M.E. and Escher, P. (2013b) Trace-element and multi-isotope geochemistry of Late-Archean black shales in the Carajás iron-ore district, Brazil. Chemical Geology, 362, 91104.CrossRefGoogle Scholar
Cathelineau, M. and Nieva, D. (1985) A chlorite solid solution geothermometer the Los Azufres (Mexico) geothermal system. Contributions to Mineralogy and Petrology, 91, 235244.CrossRefGoogle Scholar
Chemale, F., Jr., Dussin, I.A., Alkmim, F.F., Martins, M.S., Queiroga, G., Armstrong, R. and Santos M.N. (2012) Unravelling a Proterozoic basin history through detrital zircon geochronology: the case of the Espinhaço Supergroup, Minas Gerais, Brazil. Gondwana Research, 22, 200206.CrossRefGoogle Scholar
Chen, J.H., Edwards, R.L. and Wasserburg, G.J. (1986) 238U, 234U and 232Th in seawater. Earth and Planetary Science Letters, 80, 241251.CrossRefGoogle Scholar
Correns, C.W. (1932) Über die Diamantlagerstätten des Hochlandes von Diamantina, Minas Geraes, Brasilien. Zeitschrift für praktische Geologie, 40, 161168. 177–181.Google Scholar
de Lima, T.A.F., Rios, F.J., Rosière, C.A., Meireles, H.P. and Yardley, B.W.D. (2009) Fe-ore forming fluids in the Espinhaço Supergroup, Minas Gerais, Brazil. Pp. 564566. in: Smart Science for Exploration and Mining (P.J. Williams et al., editors). SGA Biennial Meeting, Townsville, Australia.Google Scholar
Derby, O.A. (1898) On the accessory elements of itacolumite, and the secondary enlargement of tourmaline. American Journal of Science, 5, 187192.CrossRefGoogle Scholar
Dussin, I.A. and Dussin, T.M. (1995) Supergrupo Espinhaço: modelo de evoluça˜o geodinâmica. Geonomos, 3, 1926.Google Scholar
Gaillardet, J., Viers, J. and Dupré, B. (2005) Trace elements in river waters. Pp. 225–272. in: Surface and Ground Water, Weathering, and Soils (J.I. Drever, editor), Elsevier, Treatise on Geochemistry, 5.CrossRefGoogle Scholar
Grambling, J.A. (1990) Internally-consistent geothermometry and H2O barometry in metamorphic rocks: the example garnet-chlorite-quartz. Contributions to Mineralogy and Petrology, 105, 617628.CrossRefGoogle Scholar
Grew, E.S., Locock, A.J., Mills, S.J., Galuskina, I.O., Galuskin, E.V. and Hålenius, U. (2013) Nomenclature of the garnet supergroup. American Mineralogist, 98, 785811.CrossRefGoogle Scholar
Grossi-Sad, J.H., Lobato, L.M., Pedrosa-Soares, A.C. and Soares-Filho, B.S. (1997) Projeto Espinhaço em CD-ROM (texto, mapas e anexos). Companhia Mineradora de Minas Gerais (COMIG), Belo Horizonte, Brazil.Google Scholar
Guichard, F., Church, T.M., Treuil, M. and Jaffrezic, H. (1979) Rare earths in barites: distribution and effects on aqueous partitioning. Geochimica et Cosmochimica Acta, 43, 983997.CrossRefGoogle Scholar
Haase, C.S. (1982) Metamorphic petrology of the Negaunee Iron Formation, Marquette district, northern Michigan: mineralogy, metamorphic reactions, and phase equilibria. Economic Geology, 77, 6081.CrossRefGoogle Scholar
Herrgesell, G. and Pflug, R. (1986) The thrust belt of the southern Serra do Espinhaço, Minas Gerais, Brazil. Zentralblatt für Geologie und Paläontologie, Teil I, 1985, 14051414.CrossRefGoogle Scholar
Heimann, A., Spry, P.G., Teale, G.S., Conor, C.H.H. and Leyh, W.R. (2009) Geochemistry of garnet-rich rocks in the southern Curnamona Province, Australia, and their genetic relationship to Broken Hill-type Pb-Zn-Ag mineralization. Economic Geology, 104, 687712.CrossRefGoogle Scholar
Heimann, A., Spry, P.G., Teale, G.S., Conor, C.H.H. and Pearson, N.J. (2011) The composition of garnet in garnet-rich rocks in the southern Proterozoic Curnamona Province, Australia: an indicator of the premetamorphic physicochemical conditions of formation. Mineralogy and Petrology, 101, 4974.CrossRefGoogle Scholar
Hoppe, A. (1980) Geology and petrography of the Middle Precambrian in the southern Serra do Espinhaço, Minas Gerais, Brazil. Precambrian Research, 13, 275296.CrossRefGoogle Scholar
Hoppe, A., Hoffmann, C. and Ottemann, J. (1983) Spessartine in Proterozoic quartzites of eastern Brazil. Neues Jahrbuch für Mineralogie, Monatshefte, 529536.Google Scholar
Hsu, L.C. (1968) Selected phase relationships in the system Al-Mn-Fe-Si-O-H: a model for garnet equilibria. Journal of Petrology, 9, 4083.CrossRefGoogle Scholar
Klein, C. (1966) Mineralogy and petrology of the metamorphosed Wabush Iron Formation, southwestern Labrador. Journal of Petrology, 7, 246305.CrossRefGoogle Scholar
Klein, C. (2005) Some Precambrian banded ironformations (BIFs) from around the world: their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. American Mineralogist, 90, 14731499.CrossRefGoogle Scholar
Knauer, L.G. and Grossi-Sad, J.H. (1997) Geologia da Folha Serro. Pp. 2057–2316. in: Projeto Espinhaço em CD-ROM (textos, mapas e anexos) (J.H. Grossi- Sad, L.M. Lobato, A.C. Pedrosa-Soares and B.S. Soares-Filho, editors), Companhia Mineradora de Minas Gerais (COMIG), Belo Horizonte.Google Scholar
Kranidiotis, P. and MacLean, W.H. (1987) Systematics of chlorite alteration at the Phelps Dodge massive sulfide deposit, Matagami, Quebec. Economic Geology, 82, 18981911.CrossRefGoogle Scholar
Leach, D.L., Puchlik, K.P. and Glanzman, R.K. (1980) Geochemical exploration for uranium in playas. Journal of Geochemical Exploration, 13, 251283.CrossRefGoogle Scholar
Lüders, V., Romer, R.L., Cabral, A.R., Schmidt, C., Banks, D.A. and Schneider, J. (2005) Genesis of itabirite-hosted Au-Pd-Pt-bearing hematite-(quartz) veins, Quadrilátero Ferrífero, Minas Gerais, Brazil: constraints from fluid inclusion infrared microthermometry, bulk crush-leach analysis and U-Pb systematics. Mineralium Deposita, 40, 289306.CrossRefGoogle Scholar
Machado, N., Schrank, A., de Abreu, F.R., Knauer, L.G. and Almeida-Abreu, P.A. (1989) Resultados preliminares da geocronologia U/Pb na Serra do Espinhaço Meridional. Simpósio de Geologia de Minas Gerais, 5, 171174.Google Scholar
Masuda, A., Kawakami, O., Dohmoto, Y. and Takenaka, T. (1987) Lanthanide tetrad effects in nature: two mutually opposite types, W and M. Geochemical Journal, 21, 119124.CrossRefGoogle Scholar
McDonough, W.F. and Sun, S.-s. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
Moraes, L.J. and Guimara˜es, D. (1931) The diamondbearing region of northern Minas Geraes, Brazil. Economic Geology, 26, 502530.CrossRefGoogle Scholar
Mücke, A. (2003) General and comparative considerations of whole-rock and mineral compositions of Precambrian iron-formations and their implications. Neues Jahrbuch für Mineralogie, Abhandlungen, 179, 175219.CrossRefGoogle Scholar
Mücke, A. (2005) The Nigerian manganese-rich ironformations and their host rocks – from sedimentation to metamorphism. Journal of African Earth Sciences, 41, 407436.CrossRefGoogle Scholar
Newton, R.C. and Manning, C.E. (2005) Solubility of anhydrite, CaSO4, in NaCl-H2O solutions at high pressures and temperatures: applications to fluid–rock interaction. Journal of Petrology, 46, 701716.CrossRefGoogle Scholar
Nyame, F.K. (2001) Petrological significance of manganese carbonate inclusions in spessartine garnet and relation to the stability of spessartine in metamorphosed manganese-rich rocks. Contributions to Mineralogy and Petrology, 141, 733746.CrossRefGoogle Scholar
Paternoster, K. (1980) Faziesverzahnung von diamantführenden Konglomeraten und Bändererzen (BIF) in der südlichen Serra do Espinhaço (Minas Gerais, Brasilien). Geologische Rundschau, 69, 437451.CrossRefGoogle Scholar
René, M. (2008) Anomalous rare earth element, yttrium and zirconium mobility associated with uranium mineralization. Terra Nova, 20, 5258.CrossRefGoogle Scholar
Renger, F. (1970) Fazies und Magmatismus der Minas- Serie in der südlichen Serra do Espinhaço, Minas Gerais, Brasilien. Geologische Rundschau, 59, 12531292.CrossRefGoogle Scholar
Ronchi, L.H., Giuliani, G., Beny, C. and Fogaça, A.C.C. (1992) Caracterizaça˜o físico-química dos fluidos associados aos veios de quartzo auríferos de Costa Sena – MG. Revista Brasileira de Geociências, 22, 129138.CrossRefGoogle Scholar
Rosière, C.A. and Rios, F.J. (2004) The origin of hematite in high-grade iron ores based on infrared microscopy and fluid inclusion studies: the example of the Conceiça˜o mine, Quadrilátero Ferrífero, Brazil. Economic Geology, 99, 611624.CrossRefGoogle Scholar
Rudnick, R.L. and Gao, S. (2003) Composition of the continental crust. Pp. 164. in: The Crust (R.L. Rudnick, editor) , Elsevi e r , Treatise on Geochemistry, 3.Google Scholar
Schwandt, C.S., Papike, J.J., Shearer, C.K. and Brearley, A.J. (1993) A SIMS investigation of REE chemistry of garnet in garnetite associated with the Broken Hill Pb-Zn-Ag orebodies, Australia. The Canadian Mineralogist, 31, 371379.CrossRefGoogle Scholar
Slack, J.F., Grenne, T. and Bekker, A. (2009) Seafloorhydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawater. Geosphere, 5, 302314.CrossRefGoogle Scholar
Souza, M.A.T.A. and Grossi-Sad, J.H. (1997) Geologia da Folha Rio Vermelho. Pp. 1667–1806. in: Projeto Espinhaço em CD-ROM (textos, mapas e anexos) (Grossi-Sad, J.H., Lobato, L.M., Pedrosa-Soares, A.C. and Soares-Filho, B.S., editors), Companhia Mineradora de Minas Gerais (COMIG), Belo Horizonte.Google Scholar
Spry, P.G. and Wonder, D. (1989) Manganese-rich garnet rocks associated with the Broken Hill leadzinc- silver deposit, New South Wales, Australia. The Canadian Mineralogist, 27, 275292.Google Scholar
Spry, P.G., Heimann, A., Messerly, J.D. and Houk, R.S. (2007) Discrimination of metamorphic and metasomatic processes at the Broken Hill Pb-Zn-Ag deposit, Australia: rare earth element signatures of garnet-rich rocks. Economic Geology, 102, 471494.CrossRefGoogle Scholar
Stanton, R.L. and Williams, K.L. (1978) Garnet compositions at Broken Hill, New South Wales, as indicators of metamorphic processes. Journal of Petrology, 19, 514529.CrossRefGoogle Scholar
Sverjensky, D.A. (1984) Europium redox equilibria in aqueous solution. Earth and Planetary Science Letters, 67, 7078.CrossRefGoogle Scholar
Theye, T., Schreyer, W. and Fransolet, A.-M. (1996) Low-temperature, low-pressure metamorphism of Mn-rich rocks in the Lienne syncline, Venn- Stavelot Massif (Belgian Ardennes), and the role of carpholite. Journal of Petrology, 37, 767783.CrossRefGoogle Scholar
Uhlein, A., Trompette, R.R. and Egydio-Silva, M. (1998) Proterozoic rifting and closure,, SE border of the Sa˜o Francisco craton, Brazil. Journal of South American Earth Sciences, 11, 191203.CrossRefGoogle Scholar
Vidal, O., Parra, T. and Trotet, F. (2001) A thermodynamic model for Fe-Mg aluminous chlorite using data from phase equilibrium experiments and natural pelitic assemblages in the 100º to 600ºC, 1 to 25 kb range. American Journal of Science, 301, 557592.CrossRefGoogle Scholar
Wonder, J.D., Spry, P.G. and Windom, K.E. (1988) Geochemistry and origin of manganese-rich rocks related to iron-formations and sulfide deposits, western Georgia. Economic Geology, 83, 10701081.CrossRefGoogle Scholar
Zang, W. and Fyfe, W.S. (1995) Chloritization of the hydrothermally altered bedrock at the Igarapé Bahia gold deposit, Carajás, Brazil. Mineralium Deposita, 30, 3038.CrossRefGoogle Scholar