Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T12:54:18.358Z Has data issue: false hasContentIssue false

Sadanagaite and subsilicic ferroan pargasite from thermally metamorphosed rocks in the Nōgō-Hakusan area, central Japan

Published online by Cambridge University Press:  05 July 2018

Takayuki Sawaki*
Affiliation:
Department of Earth Sciences, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Abstract

High-alumina subsilicic calcic amphiboles, including sadanagaite and subsilicic ferroan pargasite, are found in rock samples from the contact aureole in the Nōgō-Hakusan area, central Japan. They occur in the reaction zones between dark fragments and the surrounding crystalline limestone of the pyroxene hornfels facies zone. The dark fragments which underwent K-metasomatism are originally basaltic rocks. The sadanagaite and subsilicic ferroan pargasite have high Al2O3 (16–19 wt. %) and K2O (3.6–4.3 wt. %) contents. The Si value ranges from 5.38 to 5.64 and the total Al ranges from 3.10 to 3.43 when cation ratios are calculated on the basis of O = 23. The calculated unit cell parameters of sadanagaite are a 10.00 (1), b 18.06 (2), c 5.355 (4) Å, β105.52(7)°, V 932(1) Å3. The A-sites of the amphiboles is occupied almost entirely by K and Na; the amphiboles are saturated with the edenite component. The amphiboles show a larger extent of tschermakite-type substitution [(Mg,Fe)Si⇌AlAl] than does ordinary pargasite. Sadanagaite is probably stable at the temperature above the upper amphibolite facies.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bunch, T. E. and Okrusch, M. (1973) Am. Mineral. 58, 721-26.Google Scholar
Doolan, B. L., Zen, E-an, and Bence, A. E. (1978) Ibid. 63, 1088-99.Google Scholar
Enami, M. and Zang, Q. (1988) Ibid. 73, 48-56.Google Scholar
Enami, M. and Zang, Q., Wang, S., Zang, Q., and Hiraiwa, I. (1986) Bull. Nagoya Univ. Museum, 2, 55-70 (in Japanese with English and Chinese abstract).Google Scholar
Gulyaeva, T. Ya., Gorelikova, N. V., and Karabtov, A. (1986) Mineral. Mag. 50, 724-8.CrossRefGoogle Scholar
Hattori, I. (1978) J. Japan. Assoc. Mineral. Petrol. Econ. Geol. 73, 222-30 (in Japanese with English abstract).CrossRefGoogle Scholar
Keusen, H. R. (1973) Schweiz. Mineral. Petrog. Mitt. 52, 385-478.Google Scholar
Leake, B. E. (1971) Mineral. Mag. 38, 389-407.CrossRefGoogle Scholar
Matsubara, S. and Motoyoshi Y. (1985) Ibid. 49, 703-7.Google Scholar
Mogessie, A., Purtscheller, F., and Tessadri, R. (1986) Neues Jahrb. Mineral. Abh. 154, 21-39.Google Scholar
Rock, N. M. S. and Leake, B. E. (1984) Mineral Mag. 48, 211 27.CrossRefGoogle Scholar
Shimazaki, H., Bunno, M., and Ozawa, T. (1984) Am. Mineral. 69, 465-71.Google Scholar
Suwa, K., Enami, M., and Horiuchi, T. (1987) Mineral. Mag. 51, 709-14.CrossRefGoogle Scholar
Turner, F. J. (1981) Metamorphic Petrology (2nd ed.) Hemisphere Publishing Corporation, Washington, 524 pp.Google Scholar
van Marcke de Lummen, G. and Verkaeren, J. (1985) High Heat Production (HHP) Granites, Hydrothermal Circulation and Ore Genesis Conference, The Institution of Mining and Metallurgy, London, 535-47.Google Scholar
Windom, K. E. and Boettcher, A. L. (1980) J. Geol. 88, 705-12.CrossRefGoogle Scholar