Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:03:36.307Z Has data issue: false hasContentIssue false

Rinkite, cerianite-(Ce), and hingganite-(Ce) in syenite gneisses from the Sushina Hill Complex, India: occurrence, compositional data and petrogenetic significance

Published online by Cambridge University Press:  05 July 2018

A. Chakrabarty*
Affiliation:
Department of Geology, Durgapur Government College, Durgapur, West Bengal, 713214, India
R. H. Mitchell
Affiliation:
Department of Geology, Lakehead University, Thunder Bay, Ontario, Canada P7B 5E1
M. Ren
Affiliation:
Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA
A. K. Sen
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India
K. L. Pruseth
Affiliation:
Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand-247667, India Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
*

Abstract

Accessory rare earth element (REE) minerals occur in small quantities in agpaitic and miaskitic nepheline syenite gneisses of the Sushina Hill Complex, India. The REE-rich minerals restricted mainly to the agpaitic rocks are rinkite, cerianite-(Ce), and cerian thorite. Rinkite, formed at the ortho-magmatic stage predates other REE-rich phases and is the most Nd-F-rich rinkite (6.62–7.45 wt.% Nd2O3; 8.75–9.74 wt.% F) with very high Nd/Ce (>2.46) ratios reported to date. Hydrothermal cerianite-(Ce), formed by the decomposition of eudialyte in the agpaitic rocks, occurs as small rounded crystals rich in Ce (∼63–74 wt.% CeO2) and Y (6.03–11.69 wt.% Y2O3). The presence of cerianite-(Ce) indicates formation in an evolving hydrothermal fluid in an oxidizing milieu. Hingganite-(Ce) is present in the miaskitic unit and is considered to represent the superposition of an agpaitic mineral on an initial miaskitic assemblage. Hingganite-(Ce) is characterized by elevated contents of Ce (18.03–21.94 wt.% Ce2O3), and Nd (13.90–15.40 wt.% Nd2O3). Experimental data, coupled with the observed assemblage, suggest that the hingganite-(Ce) precipitated from the hydrothermal fluid between 400 and 300°C followed by cerianite-(Ce) (<∼300°C). This conclusion implies that eudialyte decomposition was probably initiated above 400°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, O.J. (1944) The petrology of the Norra Kärr district. Geologiska Føreningen Stockholm Førhandlingar, 66, 113255.CrossRefGoogle Scholar
Akagi, T. and Masuda, A. (1998) A simple thermodynamic interpretation of Ce anomaly. Geochemical Journal, 32, 301314.CrossRefGoogle Scholar
Allan, J.F. (1992) Geology and mineralization of the Kipawa Yttrium-Zirconium Prospect, Québec. Exploration and Mining Geology, 1, 283295.Google Scholar
Basu, S.K. (1993) Alkaline-Carbonatite Complex in Precambrian of South Purulia Shear Zone, Eastern India: Its characteristics and mineral potentialities, Indian Minerals, 47, 179194.Google Scholar
Belkin, H.E., Macdonald, R. and Grew, E.S. (2009) Chevkinite-group minerals from granulite-facies metamorphic rocks and associated pegmatites of East Antarctica and South India. Mineralogical Magazine, 73, 149164.CrossRefGoogle Scholar
Bhattacharya, H.N. and Bandyopadhaya, S. (1998) Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India. Sedimentary Geology, 119, 239252.CrossRefGoogle Scholar
Blaxland, A.B. (1977) Agpaitic magmatism at Norra Kärr? Rb-Sr isotopic evidence. Lithos, 10, 18.CrossRefGoogle Scholar
Braun, J.-J., Pagel, M., Muller, J.-P., Bilong, P., Michard, A. and Guillet, B. (1990) Cerium anomalies in lateritic profiles. Geochimica et Cosmochimica Acta, 54, 781795.CrossRefGoogle Scholar
Cámara, F., Sokolova, E. and Hawthorne, F.C. (2011) From structure topology to chemical composition. XII. Titanium silicates: the crystal chemistry of rinkite, Na2Ca4REETi(Si2O7)2OF3. Mineralogical Magazine, 75, 27552774.CrossRefGoogle Scholar
Chakrabarty, A. (2009) Petrogenesis of carbonatite and associated alkaline rocks, Purulia, W.B., India. Ph.D. Thesis, Department of Earth Sciences, Indian Institute of Technology Roorkee.Google Scholar
Chakrabarty, A., Mahato, A.C., Ren, M. and Sen, A.K. (2013) The Sushina Hill Peralkaline Complex, West Bengal, India: A Mineralogical Paradise. 18th Convention of Indian Geological Congress & International Symposium “Minerals and Mining in India – The way forward, inclusive of cooperative mineral-based industries in SAARC countries” (extended Abstract), pp. 121–122.Google Scholar
Chakrabarty, A., Pruseth, K.L. and Sen, A.K. (2011) First report of eudialyte occurrence from the Sushina Hill Region, Purulia District, West Bengal. Journal of the Geological Society of India, 77, 1216.CrossRefGoogle Scholar
Chakrabarty, A., Pruseth, K.L. and Sen, A.K. (2012) Composition and petrogenetic significance of the eudialyte group of minerals from Sushina, Purulia, West Bengal. Journal of the Geological Society of India, 79, 449459.CrossRefGoogle Scholar
Chakrabarty, A., Sen, A.K. and Ghosh, T.K. (2009) Amphibole – A key indicator mineral for petrogenesis of carbonatite from Purulia, West Bengal, India. Mineralogy and Petrology, 95, 105112.CrossRefGoogle Scholar
Chakrabarty, A. and Sen, A.K. (2010) Enigmatic association of the carbonatite and alkali-pyroxenite along the Northern Shear Zone: A saga of primary magmatic carbonatites. Journal of the Geological Society of India, 74, 403413.CrossRefGoogle Scholar
Chakrabarty, A. and Sen, A.K. (2013) Geochronological constraints and tectonic implications of the alkaline rocks of South Purulia Shear Zone, W.B., India. 18th Convention of Indian Geological Congress & International Symposium “Minerals and Mining in India-The way forward, inclusive of cooperative mineral-based industries in SAARC countries” (extended Abstract), pp 86–88.Google Scholar
Chatterjee, N., Crowley, J.L. and Ghose, N.C. (2008) Geochronology of the 1.55 Ga Bengal anorthosite and Grenvillian metamorphism in the Chotanagpur gneissic complex, eastern India. Precambrian Research, 161, 303316.CrossRefGoogle Scholar
Chatterjee, N., Banerjee, M., Bhattacharya, A. and Maji, A.K. (2010) Monazite chronology, metamorphism –anatexis and tectonic relevance of the mid- Neoproterozoic Eastern Indian Tectonic Zone. Precambrian Research, 179, 99120.CrossRefGoogle Scholar
Chatterjee, N. and Ghose, N.C. (2011) Extensive Early Neoproterozoic high-grade metamorphism in North Chotanagpur Gneissic Complex of the Central Indian Tectonic Zone. Gondwana Research, 20, 362379.CrossRefGoogle Scholar
Curtis, L.W. and Currie, K.L. (1977) Geology and petrology of the Red Wine complex, central Labrador. Geological Survey of Canada Bulletin, 287, 61.Google Scholar
Demartin, F., Pilati, T., Diella, V., Gentile, P. and Gramaccioli, C.M. (1993) A crystal-chemical investigation of Alpine gadolinite. The Canadian Mineralogist, 31, 127136.Google Scholar
Demartin, F., Minaglia, A. and Gramaccioli, C.M. (2001) Characterization of gadolinite-group minerals using crystallographic data only: the case of hingganite-(Y) from Cuasso Al Monte, Italy. The Canadian Mineralogist, 39, 11051114.CrossRefGoogle Scholar
Edgar, A.D. and Blackburn, C.E. (1972) Eudialyte from the Kipawa Lake area, Temiscamingue County, Québec. The Canadian Mineralogist, 11, 554559.Google Scholar
Eriksson, P.G., Mazumder, R., Catuneanu, O., Bumby, A.J. and Ilondo, B.O. (2006) Precambrian continental freeboard and geological evolution: A time perspective. Earth-Science Reviews, 79, 165204.CrossRefGoogle Scholar
Frondel, C. and Marvin, U.B. (1959) Cerianite C.O., from Poços de Caldas, Brazil. American Mineralogist, 44, 882884.Google Scholar
Goswami, J.N., Mishra, S., Wiedenbeck, M., Ray, S.L. and Saha, A.K. (1995) 3.55 Ga old zircon from Singhbhum-Orissa iron ore Craton, Eastern India. Current Science, 69, 10081011.Google Scholar
Goswami, B. and Basu, S.K. (2013) Metamorphism of Proterozoic agpaitic nepheline syenite gneiss from North Singhbhum Mobile Belt, eastern India. Mineralogy and Petrology, 107, 517538.CrossRefGoogle Scholar
Graham, A.R. (1955) Cerianite CeO2: a new rare-earth oxide mineral. American Mineralogist, 40, 560564.Google Scholar
Grew, E.S. (2002) Mineralogy, petrology and geochemistry of Beryllium: An introduction to and list of Beryllium minerals. Pp. 176. in: Beryllium – Mineralogy – Petrology and Geochemistry (E.S. Grew, editor). Reviews in Mineralogy and Geochemistry, 50. Mineralogical Society of America and the Geochemical Society, Washington, D.C.CrossRefGoogle Scholar
Guastoni, A., Nestola, F. and Giaretta, A. (2009) Mineral chemistry and alteration of rare earth element (REE) carbonates from alkaline pegmatites of Mount Malosa, Malawi. American Mineralogist, 94, 12161222.CrossRefGoogle Scholar
Holtstam, D. and Andersson, U.B. (2007) The REE minerals of the Bastnäs-type deposits, south-central Sweden. The Canadian Mineralogist, 45, 10731114.CrossRefGoogle Scholar
Ito, J. and Hafner, S.S. (1974) Synthesis and study of gadolinites. American Mineralogist, 59, 700708.Google Scholar
Jambor, J.L., Roberts, A.C., Grice, J.D., Birkett, T.C., Gorat, L.A. and Zajac, S. (1998) Gernite-(Y), (Ca,Na)2(Y,REE)3Si6O18.2H2O, a new mineral species, and an associated Y-bearing gadolinite-group mineral, from the Strange Lake Peralkaline Complex, Quebec-Labrador. The Canadian Mineralogist, 36, 793800.Google Scholar
Lorenzen, J. (1884) Untersuchung einiger Mineralienaus Kangerdluarsuk in Grönland. Zeitschrift für Kristallographie, 9, 243254.Google Scholar
Lottermoser, B.G. (1987) Churchite from the Mt Weld carbonatite laterite , Western Australia. Mineralogical Magazine, 51, 468469.CrossRefGoogle Scholar
Maji, A.K., Goon, S., Bhattacharya, A., Mishra, B., Mahato, S. and Bernhardt, H.J. (2008) Proterozoic polyphase metamorphism in the Chhotanagpur Gneissic Complex (India), and implication for trans-continental Gondwanaland correlation. Precambrian Research, 162, 385402.CrossRefGoogle Scholar
Markl, G. and Baumgartner, L. (2002) pH changes in peralkaline late-magmatic fluids. Contributions to Mineralogy and Petrology, 144, 331346.CrossRefGoogle Scholar
Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R. and Markl, G. (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439455.CrossRefGoogle Scholar
Matsumoto, Y. and Sakamoto, A. (1982) Preliminary report on metamict cerianite from Nesöya, Lützow- Holmbukta, East Antarctica. Memoirs of National Institute of Polar Research, 21, 103111.Google Scholar
Mazumder, R. (2005) Proterozoic sedimentation and volcanism in the Singhbhum crustal province, India and their implications, Sedimentary Geology, 176, 167193.Google Scholar
Mishra, S., Deomurari, M.P., Widenbeck, M., Goswami, J.N., Ray, S.L. and Saha, A.K. (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum craton, eastern India: an ion microprobe study. Precambrian Research, 93, 139151.CrossRefGoogle Scholar
Mitchell, R.H. and Chakrabarty, A. (2012) Paragenesis and decomposition assemblage of a Mn-rich eudialyte from the Sushina peralkaline nepheline syenite gneiss, Paschim Banga, India. Lithos, 152, 218226.CrossRefGoogle Scholar
Mitchell, R.H. and Liferovich, R.P. (2006) Subsolidus deuteric/hydrothermal alteration of eudialyte in lujavrite from the Pilansberg alkaline complex, South Africa. Lithos, 91, 352372.CrossRefGoogle Scholar
Miyawaki, R., Nakai, I. and Nagashima, K. (1984) A refinement of the crystal structure of gadolinite. American Mineralogist, 69, 948953.Google Scholar
Miyawaki, R., Matsubara, S., Yokoyama, K. and Okamoto, A. (2007) Hingganite-(Ce) and hingganite-( Y) from Tahara, Hirukawa-mura, Gifu Prefecture, Japan: The description on a new mineral species of the Ce-analogue of hingganite-(Y) with a refinement of the crystal structure of hingganite-(Y). Journal of Mineralogical and Petrological Sciences, 102, 17.CrossRefGoogle Scholar
Pan, Y. and Stauffer, M.R. (2000) Cerium anomaly and Th/U fractionation in the 1.85 Ga Flin Flon Paleosol: clues from REE- and U-rich accessory minerals and implications for paleoatmospheric reconstruction. American Mineralogist, 85, 898911.CrossRefGoogle Scholar
Papoutsa, AD. and Pe-Piper, G. (2013) The relationship between REE-Y-Nb-Th minerals and the evolution of an A-type granite, Wentworth Pluton, Nova Scotia. American Mineralogist, 98, 444462.CrossRefGoogle Scholar
Pearson, R.G. (1963) Hard and soft acids and bases. Journal of the American Chemical Society, 85, 35333539.CrossRefGoogle Scholar
Pezzotta, F., Diella, V. and Guastoni, A. (1999) Chemical and paragenetic data on gadolinite-group minerals from Baveno and Cuasso al Monte, southern Alps, Italy. American Mineralogist, 84, 782789.CrossRefGoogle Scholar
Pfaff, K., Krumrei, K., Marks, M., Wenzel, T., Rudolf, T. and Markl, G. (2008) Chemical and physical evolution of the ‘lower layered sequence’ from the nepheline syenitic Ilímaussaq intrusion, South Greenland: Implications for the origin of magmatic layering in peralkaline felsic liquids. Lithos, 106, 280296.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp 3175. in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.CrossRefGoogle Scholar
Pršek, J., Ondrejka, M., Bačík, P., Budzy and Uher, P. (2010) Metamorphic-hydrothermal REE minerals in the Bacúch magnetite deposit, Western Carpathians, Slovakia: (Sr, S)-rich monazite-(Ce) and Nddominant hingganite. The Canadian Mineralogist, 48, 8194.CrossRefGoogle Scholar
Rekha, S., Upadhyay, D., Bhattacharya, A., Kooijman, E., Goon, S., Mahato, S. and Pant, N.C. (2011) Lithostructural and chronological constraints for tectonic restoration of Proterozoic accretion in the Eastern Indian Precambrian shield. Precambrian Research, 187, 313333.CrossRefGoogle Scholar
Saha, A.K. (1994) Crustal evolution of Singhbhum- North Orissa, Eastern India. Memoir of the Geological Society of India, 27, 341.Google Scholar
Sanyal, S. and Sengupta, P. (2012) Metamorphic evolution of the Chotanagpur Granite Gneiss Complex of East Indian Shield: current status. Pp. 117145. in: Palaeoproterozoic of India (R. Mazumder and D. Saha, editors). Special Publications, 365. Geological Society, London.Google Scholar
Schilling, J., Wu, F.-Y., McCammon, C., Wenzel, T., Marks, M.A.W., Pfaff, K., Jacob, D.E. and Markl, G. (2011) The compositional variability of eudialytegroup minerals. Mineralogical Magazine, 75, 87115.CrossRefGoogle Scholar
Segalstad, T.M. and Larsen, A.O. (1978) Gadolinite- (Ce) from Skien, southwestern Oslo region, Norway. American Mineralogist, 63, 188195.Google Scholar
Skublov, S.G., Astaf’ev, B.Yu., Marin, Yu.B., Gembitskaya, I.M. and Levchenkov, O.A. (2009) First find of cerianite in zircons from metasomatites of the Terskii Greenstone Belt, Baltic Shield. Doklady Earth Sciences, 428, 11341138.CrossRefGoogle Scholar
Sørensen, H. (1992) Agpaitic nepheline syenites: a potential source of rare elements. Applied Geochemistry, 7, 417427.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks – an overview. Mineralogical Magazine, 61, 485498.CrossRefGoogle Scholar
Styles, M.T. and Young, B.R. (1983) Fluocerite and its alteration products from the Afu Hills, Nigeria. Mineralogical Magazine, 47, 4146.CrossRefGoogle Scholar
Van Wambeke, L. (1977) The Karonge rare earth deposits, Republic of Burundi: new mineralogicalgeochemical data and origin of the mineralization. Mineralium Deposita, 12, 373380.CrossRefGoogle Scholar
Williams-Jones, A.E., Migdisov, A.A. and Samson, I.M. (2012) Hydrothermal mobilisation of the Rare Earth Elements – a Tale of “Ceria” and “Yttria”. Elements, 8, 355360.CrossRefGoogle Scholar
Zaitsev, A.N., Chakhmouradian, A.R., Sidra, O.I., Spratt, J., Williams, C.T., Stanley, C.J., Petrov, S.V., Britvin, S.N. and Polyakova, E.A. (2011) Fluorine-, yttrium- and lanthanide-rich cerianite- (Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineralogical Magazine, 75, 28132822.CrossRefGoogle Scholar