Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-23T05:08:53.702Z Has data issue: false hasContentIssue false

The REE- and HFSE-bearing phases in the Itatiaia alkaline complex (Brazil) and geochemical evolution of feldspar-rich felsic melts

Published online by Cambridge University Press:  02 January 2018

Leone Melluso*
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
Vincenza Guarino
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
Michele Lustrino
Affiliation:
Dipartimento di Scienze della Terra, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy CNR-IGAG c/o Dipartimento di Scienze della Terra, Università di Roma La Sapienza, P.le Aldo Moro 5, 00185 Roma, Italy
Vincenzo Morra
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
Roberto de' Gennaro
Affiliation:
Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse, Università di Napoli Federico II, via Mezzocannone 8, 80134 Napoli, Italy
*

Abstract

The Late Cretaceous Itatiaia complex is made up of nepheline syenite grading to peralkaline varieties, quartz syenite and granite, emplaced in the metamorphic rocks of the Serra do Mar, SE Brazil. The nepheline syenites are characterized by assemblages with alkali feldspar, nepheline, Fe-Ti oxides, clinopyroxene, amphibole, apatite and titanite, while the peralkaline nepheline syenites have F-disilicates (rinkite, wöhlerite, hiortdahlite, låvenite), britholite and pyrophanite as the accessory phases. The silica-oversaturated rocks have alkali feldspar, plagioclase, quartz, amphibole, clinopyroxene and Fe-Ti oxides; the chevkinite-group minerals are the featured accessory phases and are found with allanite, fluorapatite, fluorite, zircon, thorite, yttrialite, zirconolite, pyrochlore and yttrocolumbite. The major- and trace-element composition of the Itatiaia rocks have variations linked to the amount of accessory phases, have smooth, enriched chondritenormalized rare-earth element (REE) distribution patterns in the least-evolved nepheline syenites and convex patterns in the most-evolved nepheline syenites. The REE distribution patterns of the quartz syenites and granites show a typical pattern caused by fractional crystallization of feldspar and amphibole, in an environment characterized by relatively high oxygen fugacity (>NiNiO buffer) and high concentrations of H2O and F, supporting the crystallization of hydrous phases, fluorite and F-disilicates. The removal of small amounts of titanite in the transition from the least-evolved to the most-evolved nepheline syenites stems from petrogenetic models involving REE, and is shown to be a common feature of the magmatic evolution of many other syenitic/ trachytic/ phonolitic complexes of the Serra do Mar and elsewhere.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, D.J., Lindsley, D.H. andDavidson, P.M. (1993) QUILF: a Pascal program to assess equilibria among Fe-Mn-Mg-Ti oxides, pyroxenes, olivine and quartz. Computers and Geosciences, 19, 13331350.CrossRefGoogle Scholar
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R. S. (2010) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: zirconium silicate mineral assemblages as indicators of alkalinity and volatile fugacity in mildly agpaitic magmas. Journal of Petrology, 51, 23032325.CrossRefGoogle Scholar
Andersen, T., Erambert, M., Larsen, A.O. and Selbekk, R. S. (2013) Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic complex. Mineralogia, 44, 6198.CrossRefGoogle Scholar
Atencio, D., Coutinho, J.M.V., Ulbrich, M.N.C., Vlach, S. R.F., Rastvetaeva, R.K. and Pushcharovky, D.Yu. (1999) Hainite from Pocos de Caldas, Minas Gerais, Brazil. The Canadian Mineralogist, 37, 9198.Google Scholar
Azzone, R.A., Ruberti, E., Enrich, G.E.R. and Gomes, C. B. (2009) Zr-and Ba-rich minerals from the Ponte Nova alkaline mafic-ultramafic massif, southeastern Brazil: indication of an enriched mantle source. The Canadian Mineralogist, 47, 10871103.CrossRefGoogle Scholar
Baginski, B. and Macdonald, R. (2013) The chevkinite group: underestimated accessory phases from a wide range of parageneses. Mineralogia, 44, https://doi.org/10.2478/mipo-2013-0006.CrossRefGoogle Scholar
Barbieri, M., Beccaluva, L., Brotzu, P., Conte, A., Garbarino, C., Gomes, C.B., Loss, E.L., Macciotta, G., Morbidelli, L., Scheibe, L.F., Tamura, R.M. and Traversa, G. (1987) Petrological and geochemical studies of alkaline rocks from continental Brazil. 1. The phonolite suite from Piratini R.S.. Geochimica Brasiliensis, 1, 109138.Google Scholar
Bellieni, G., Montes-Lauar, C.R., De Min, A., Piccirillo, E.M., Cavazzini, G., Melfi, A.J. andPacca, I.G. (1990) Early and Late Cretaceous magmatism from São Sebastião Island (SE Brazil): geochemistry and petrology. Geochimica Brasiliensis, 4, 5983.Google Scholar
Bennio, L., Brotzu, P., Gomes, C.B., D'Antonio, M., Lustrino, M., Melluso, L., Morbidelli, L. and Ruberti, E. (2002) Petrological, geochemical and Sr-Nd isotopic features of alkaline rocks from the Arraial do Cabo Frio peninsula (southeastern Brazil). Periodico di Mineralogia, 71, 137158.Google Scholar
Bennio, L., Brotzu, P., D'Antonio, M., Feraud, G., Gomes, C.B., Marzoli, A., Melluso, L., Morbidelli, L., Morra, Y, Rapaille, C. and Ruberti, E. (2003) The tholeiitic dyke swarm of the Arraial do Cabo peninsula (SE Brazil): 39Ar/40Ar ages, petrogenesis and regional significance. Journal of South American Earth Sciences, 16, 163176.CrossRefGoogle Scholar
Borst, A.M., Friis, H., Andersen, T., Nielsen, T.F.D., Waight, T.E. and Smit, M.A. (2016) Zirconosilicates in the kakortokites of the Ilímaussaq complex, South Greenland: Implications for fluid evolution and high-field-strength and rare-earth element mineralization in agpaitic systems. Mineralogical Magazine, 80, 530.CrossRefGoogle Scholar
Bowles, J.F.W. (1988) Definition and range of composition of naturally occurring minerals with the pseudo-brookite structure. American Mineralogist, 73, 13771383.Google Scholar
Boynton, W.B. (1984) Cosmochemistry of Rare Earth Elements: meteorite studies. Pp. 63114 in: Rare Earth Element Geochemistry (P. Henderson, editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
Brotzu, P., Beccaluva, L., Conte, A., Fonseca, M., Garbarino, C., Gomes, C.B., Leong, R., Macciotta, G., Mansur, R.L., Melluso, L., Morbidelli, L., Ruberti, E., Sigolo, J.B., Traversa, G. and Valença, J.G. (1989) Petrological and geochemical studies of alkaline rocks from continental Brazil. 8. The syenitic intrusion of Morro Redondo R.J.. Geochimica Brasiliensis, 3, 6380.Google Scholar
Brotzu, P., Barbieri, M., Beccaluva, L., Garbarino, C., Gomes, C.B., Macciotta, G., Melluso, L., Morbidelli, L., Ruberti, E., Sigolo, J.B. and Traversa, G. (1992) Petrology and geochemistry of the Passa Quatro alkaline complex, southeastern Brazil. Journal of South American Earth Sciences, 6, 237252.CrossRefGoogle Scholar
Brotzu, P., Gomes, C.B., Melluso, L., Morbidelli, L., Morra, V. and Ruberti, E. (1997) Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, southeastern Brazil. Lithos, 40, 133156.CrossRefGoogle Scholar
Brotzu, P., Melluso, L., d'Amelio, F. and Lustrino, M. (2005) Mafic/ultramafic dykes and felsic intrusions with potassic to ultrapotassic affinity in the Serra do Mar province: a review. Pp. 443472 in: Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform (Comin-Chiaramonti, P. and Gomes, C.B., editors). FAPESP, São Paulo, Brazil.Google Scholar
Brotzu, P., Melluso, L., Bennio, L., Gomes, C.B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C. C.G. and D'Antonio, M. (2007) Petrogenesis of the Cenozoic potassic alkaline complex of Morro de São João, southeastern Brazil. Journal of South American Earth Sciences, 24, 93115.CrossRefGoogle Scholar
Carbonin, S., Liziero, F. and Fuso, C. (2005) Mineral chemistry of accessory minerals in alkaline complexes from the Alto Paraguay Province. Pp. 149158 in: Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform (Comin-Chiaramonti, P. and Gomes, C.B., editors). FAPESP, São Paulo, Brazil.Google Scholar
Carlier, G. and Lorand, J.-P (2008) Zr-rich accessory minerals (titanite, perrierite, zirconolite, baddeleyite) record strong oxidation associated with magma mixing in the south Peruvian potassic province. Lithos, 104, 5470.CrossRefGoogle Scholar
Cellai, D., Conticelli, S. and Diella, Y (1993) Perrierite-chevkinite in igneous ultrapotassic rocks from Central Italy: chemical data and their petrological significance. Periodico di Mineralogia, 62, 5766.Google Scholar
Cerny, P., Novak, M., Chapman, R. and Ferreira, K.J. (2007) Subsolidus behavior of niobian rutile from the Pisek region, Czech Republic: a model for exsolution in W-and Fe2+»Fe3+-rich phases. Journal of Geosciences, 52, 143159.Google Scholar
Chakhmouradian, A.R., Mitchell, R.H., Burns, P.C. and Mikhailova, Y (2008) Marianoite, a new member of the cuspidine group from the Prairie Lake silicocarbo-natite, Ontario. The Canadian Mineralogist, 46, 10231032.CrossRefGoogle Scholar
Christiansen, C.C., Johnsen, O. and Makovicky, E. (2003a) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 12031224.CrossRefGoogle Scholar
Christiansen, C.C., Gault, R.A., Grice, J.D. and Johnsen, O. (2003b) Kochite, a new member of the rosenbuschite group from the Werner Bjerge alkaline complex, East Greenland. European Journal of Mineralogy, 15, 551554.CrossRefGoogle Scholar
Clark, J.R. and Williams-Jones, A.E. (2004) Rutile as a potential indicator mineral for metamorphosed metallic ore deposits. Rapport Final de DIVEX, Sous-project SC2, Montréal, Canada, 17 pp.Google Scholar
Comin-Chiaramonti, P. and Gomes, C.B. (2005) Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform. FAPESP, São Paulo, Brazil, 751 pp.Google Scholar
Cucciniello, C., Tucker, R.D., Jourdan, F., Melluso, L. and Morra, Y (2016) The age and petrogenesis of the alkaline magmatism of Ampasindava Peninsula and Nosy Be archipelago, northern Madagascar. Mineralogy and Petrology, 110, 309331.CrossRefGoogle Scholar
Czamanske, G.K. and Dillet, B. (1988) Alkali amphibole, tetrasilicic mica and sodic pyroxene in peralkaline siliceous rocks, Questa caldera, New Mexico. American Journal of Science, 288-A, 358392.Google Scholar
De La Roche, H., Leterrier, P., Grandclaude, P. and Marchal, E. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chemical Geology, 29, 183210.CrossRefGoogle Scholar
Enrich, G.E.R., Azzone, R.G., Ruberti, E., Gomes, C.B. and Comin-Chiaramonti, P. (2005) Itatiaia, Passa Quatro and São Sebastião Island, the major alkaline syenitic complexes from the Serra do Mar Region. Pp. 419441 in: Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform (Comin-Chiaramonti, P. and Gomes, C.B., editors). FAPESP, São Paulo, Brazil.Google Scholar
Enrich, G.E.R., Ruberti, E. and Gomes, C.B. (2009) Geology and geochronology of Monte de Trigo island alkaline suite, southeastern Brazil. Revista Brasileira de Geociencias, 39, 6780.CrossRefGoogle Scholar
Fedele, L., Lustrino, M., Melluso, L., Morra, V., Zanetti, A. and Vannucci, R. (2015) Trace element distribution in plagioclase, alkali feldspar, Ti-magnetite, biotite and apatite in evolved potassic liquids from Campi Flegrei (Southern Italy). American Mineralogist, 100, 233249.CrossRefGoogle Scholar
Foland, K.A., Landoll, J.D., Henderson, C.M.B. and Chen, J.-F (1993) Formation of cogenetic quartz and nepheline syenites. Geochimica et Cosmochimica Acta, 57, 697704.CrossRefGoogle Scholar
Geraldes, M.C., Motoki, A., Costa, A., Mota, C.E. and Mohriak, W.U. (2013) Geochronology (Ar/Ar and K/ Ar) of the South Atlantic post-break-up magmatism. Pp. 4174 in: Conjugate Divergent Margins (W.U. Mohriak, A. Danforth, P.J. Post, D.E. Brown, G.C. Tari, M. Nemčok, S.T Sinha, editors). Geological Society, London, Special Publications, 369.Google Scholar
Giehl, C., Marks, M.A.W and Nowak, M. (2013) Phase relations and liquid lines of descent of an iron-rich peralkaline phonolitic melt: an experimental study. Contributions to Mineralogy and Petrology, 165, 283304.CrossRefGoogle Scholar
Giret, A., Bonin, B. and Leger, J.M. (1980) Amphibole compositional trends in oversaturated and undersatur-ated alkaline plutonic ring-complexes. The Canadian Mineralogist, 18, 481495.Google Scholar
Gomes, C.B., Barbieri, M., Beccaluva, L., Brotzu, P., Conte, A., Garbarino, C., Macciotta, G., Melluso, L., Morbidelli, L., Ruberti, E., Scheibe, L.F., Tamura, R. M. and Traversa, G. (1987) Petrological and geo-chemical studies of alkaline rocks from continental Brazil. 2. The Tunas massif, state of Paraná. Geochimica Brasiliensis, 1, 201234.Google Scholar
Gomes, C.B., Ruberti, E., Comin-Chiaramonti, P. and Azzone, R. (2011) Alkaline magmatism in the Ponta Grossa Arch, SE Brazil: a review. Journal of South American Earth Sciences, 32, 152168.CrossRefGoogle Scholar
Gualda, G. and Vlach, S.R.F. (2007) The Serra da Graciosa A-type granites and syenites, southern Brazil part 3: magmatic evolution and post-magmatic breakdown of amphiboles of the alkaline association. Lithos, 93, 328339.CrossRefGoogle Scholar
Guarino, V., Fedele, L., Franciosi, L., Lonis, R., Lustrino, M., Marrazzo, M., Melluso, L., Morra, V., Rocco, I. and Ronga, F. (2011) Mineral compositions and magmatic evolution of the calcalkaline rocks of northwestern Sardinia, Italy. Periodico di Mineralogia, 80, 517545.Google Scholar
Guarino, V., Azzone, R.G., Brotzu, P., Gomes, C.B., Melluso, L., Morbidelli, L., Ruberti, E., Tassinari, C. C.G. and Brilli, M. (2012) Magmatism and fenitiza-tion at the Ipanema mafic-ultramafic alkaline-carbonatitic complex, São Paulo State, Brazil. Mineralogy and Petrology, 104, 4361.CrossRefGoogle Scholar
Guarino, V., Wu, F.-Y., Lustrino, M., Melluso, L., Brotzu, P., Gomes, C.B., Ruberti, E., Tassinari, C.C.G. and Svisero, D.P. (2013) U-Pb ages, Sr-Nd-isotope geochemistry and petrogenesis of kimberlites, kama-fugites and phlogopite-picrites of the Alto Paranaíba Igneous Province, Brazil. Chemical Geology, 353, 6582.CrossRefGoogle Scholar
Gupta, A.K. (2015) Origin of Potassium-Rich Silica-Deficient Igneous Rocks. Springer, 536 pp. ISBN: 978-81-322-2082-1CrossRefGoogle Scholar
Hamilton, D.L. and MacKenzie, W.S. (1965) Phase equilibrium studies in the system NaAlSiO4 (nephel-ine)-KAlSiO4-(kalsilite)-SiO2-H2O. Mineralogical Magazine, 34, 214231.CrossRefGoogle Scholar
Harris, C., Marsh, J.S. and Milner, S.C. (1999) Petrology of the alkaline core of the Messum Igneous Complex, Namibia: evidence for the progressively decreasing effect of crustal contamination. Journal of Petrology, 40, 13771397.CrossRefGoogle Scholar
Janasi, Y de A., de Freitas, V.A. andHeaman, L.H. (2011) The onset of flood basalt volcanism, northern Parana basin, Brazil: a precise U-Pb baddeleyite/zircon age for a Chapecó-type dacite. Earth and Planetary Science Letters, 302, 147153.CrossRefGoogle Scholar
Kempe, U., Möckel, R., Graupner, T., Kynicky, J. and Dombon, E. (2015) The genesis of Zr-Nb-REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered. Ore Geology Reviews, 64, 602625.CrossRefGoogle Scholar
Lanyon, R. and le Roex, A.P. (1995) Petrology of the alkaline and ultramafic lamprophyres associated with the Okenyenya igneous complex, northwestern Namibia. South African Journal of Geology, 98, 140156.Google Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, A.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, commission on new minerals and minerals names. The Canadian Mineralogist, 35, 219246.Google Scholar
Le Maitre, R.W. (2002) Igneous Rocks: a Classification and Glossary of Terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Cambridge University Press, Cambridge, UK, 236 pp.CrossRefGoogle Scholar
Lustrino, M., Dallai, L., Giordano, R., Gomes, C.B., Melluso, L., Morbidelli, L., Ruberti, E. and Tassinari, C.C.G. (2003) Geochemical and Sr-Nd-O Isotopic features of the Poços de Caldas alkaline massif (SP-MG, SE Brazil): relationships with the Serra do Mar analogues. Pp. 593595 in: IV South American Symposium on Isotope Geology. Short Papers. Salvador-BA, Brazil.Google Scholar
Lustrino, M., Melluso, L., Brotzu, P., Gomes, C.B., Morbidelli, L., Muzio Sauer, R., Ruberti, E. and Tassinari, C.C.G. (2005) Petrogenesis of the Early Cretaceous Valle Chico igneous complex (SE Uruguay): relationships with Paraná-Etendeka felsic rocks. Lithos, 82, 407434.CrossRefGoogle Scholar
Lustrino, M., Cucciniello, C., Melluso, L., Tassinari, C.C. G., de Gennaro, R. and Serracino, M. (2012) Petrogenesis of Cenozoic volcanic rocks in the NW sector of the Gharyan volcanic field, Libya. Lithos, 155, 218235.CrossRefGoogle Scholar
Lyubetskaya, T and Korenaga, I (2007) Chemical composition of Earth's primitive mantle and its variance: 1. methods and results. Journal of Geophysical Research, 112, B03211. https://doi.org/10.1019/2005JB004223 Google Scholar
Macdonald, R. and Belkin, H.E. (2002) Compositional variation in minerals of the chevkinite group. Mineralogical Magazine, 66, 10751098.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Dzierżanowski, P., Fettes, D.J. and Upton, B.G.J. (2013a) Chevkinite-group minerals in UK Paleogene granites: underestimated REE-bearing accessory phases. The Canadian Mineralogist, 51, 333347.CrossRefGoogle Scholar
Macdonald, R., Baginski, B., Dzierżanowski, P. and Jokubauskas, P. (2013b) Apatite-supergroup minerals in UK Palaeogene granites: composition and relationship to host-rock composition. European Journal of Mineralogy, 25, 461471.CrossRefGoogle Scholar
Marks, M.A.W., Coulson, I.M., Schilling, J., Jacob, D.E., Schmitt, A.K. and Markl, G. (2008) The effect of titanite and other HFSE-rich mineral (Ti-andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chemical Geology, 257, 153172.CrossRefGoogle Scholar
Marks, M.A.W., Hettmann, K., Schilling, J., Frost, B.R. and Markl, G. (2011) The mineralogical diversity of alkaline igneous rocks: critical factors for the transition from miaskitic to agpaitic phase assemblages. Journal of Petrology, 52, 439455.CrossRefGoogle Scholar
Mbouwou, G.I.B., Botelho, N. F., Lagmet, C.A. and Ngounouno, I. (2015) Petrology of peraluminous and peralkaline rhyolites from the SE Lake Chad (northernmost Cameroon Line). Journal of African Earth Sciences, 112, 129141.CrossRefGoogle Scholar
Meinhold, G. (2010) Rutile and its application in Earth Sciences. Earth-Science Reviews, 102, 128.CrossRefGoogle Scholar
Melluso, L., Lustrino, M., Ruberti, E., Brotzu, P., Gomes, C.B., Morbidelli, L., Morra,V., Svisero, D.P. and d'Amelio, F. (2008) Major and trace element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaíba, Brazil. The Canadian Mineralogist, 46, 1940.CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010) Mineral compositions and mag-matic evolution of the Sung Valley ultramafic-alkaline-carbonatitic complex (NE India). The Canadian Mineralogist, 48, 205229.CrossRefGoogle Scholar
Melluso, L., de’ Gennaro, R., Fedele, L., Franciosi, L. and Morra, V (2012a) Evidence of crystallization in residual, Cl-F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geological Magazine, 149, 532550.CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Petrone, C.M., Guarino, V. and Sinha, A.K. (2012b) Mineralogy, magmatic affinity and evolution of the Early Cretaceous alkaline complex of Jasra, Shillong Plateau, northeastern India. Mineralogical Magazine, 76, 10991117.CrossRefGoogle Scholar
Melluso, L., Hergt, J.M. and Zanetti, A. (2014a) The late crystallization stages of low-Ti, low-Fe tholeiitic magmas: insights from evolved Antarctic and Tasmanian rocks. Lithos, 188, 7283.CrossRefGoogle Scholar
Melluso, L., Morra, V., Guarino, V., de’ Gennaro, R., Franciosi, L. and Grifa, C. (2014b) The crystallization of shoshonitic to peralkaline trachyphonolitic magmas in a H2O-Cl-F-rich environment at Ischia (Italy), with implications for the feeder system of the Campania Plain volcanoes. Lithos, 210-211, 242259.CrossRefGoogle Scholar
Menezes, S.G., Azzone, R.G., Rojas, G.E.E., Ruberti, E., Cagliarani, R., Gomes, C.B. and Chmyz, L. (2015) The antecryst compositional influence on Cretaceous alkaline lamprophyre dykes, SE Brazil. Brazilian Journal of Geology, 45, 7993.CrossRefGoogle Scholar
Mitchell, R.H. and Liferovich, R.P. (2004) Ecandrewsite-zincian pyrophanite from lujavrite, Pilanesberg alkaline complex, South Africa. Mineralogical Magazine, 42, 11691178.Google Scholar
Morbidelli, L., Gomes, C.B., Beccaluva, L., Brotzu, P., Conte, A.M., Ruberti, E. and Traversa, G. (1995) Mineralogical, petrological and geochemical aspects of alkaline and alkaline-carbonatite associations from Brazil. Earth-Science Reviews, 39, 135168.CrossRefGoogle Scholar
Moreau, C., Ohnenstetter, D., Demaiffe, D. andRobineau, B. (1996) The Los Archipelago nepheline syenite ring structure: a magmatic marker of the evolution of the central and equatorial Atlantic. The Canadian Mineralogist, 34, 281299.Google Scholar
Motoki, A., Sichel, S.E., Vargas, T., Aires, J.R., Iwanuch, W., Mello, S.L.M., Motoki, K.F., Da Silva S., Balmant, A. and Gonçalves, J. (2010) Geochemical evolution of the felsic alkaline rocks of Tanguá and Rio Bonito intrusive bodies, State of Rio de Janeiro, Brazil. São Paulo UNESP, Geociências, 29, 291310.Google Scholar
Motoki, A., Sichel, S.E., Vargas, T., Melo, D.P. and Motoki, K.F. (2015) Geochemical behaviour of trace elements during fractional crystallization and crustal assimilation of the felsic alkaline magmas of the state of Rio de Janeiro, Brazil. Anais da Academia Brasileira de Cîencias, 87, 19591979.CrossRefGoogle ScholarPubMed
Olin, P.H. and Wolff, J.A. (2012) Partitioning of rare earth and high field strength elements between titanite and phonolitic liquid. Lithos, 128, 4654.CrossRefGoogle Scholar
Penalva, F. (1967) Geologia e tectonica da região do Itatiaia. Boletim Facultade Filosofia Ciências e Letras, Università de São Paulo, 302, 95196.Google Scholar
Pires, G.L.C., Bongiolo, E.M., Nuemann, R. and Avila, C. A. (2014) Caracterizaçao petrografica e mineralogica de brechas magmatico-hidrotermais no complexo alcalino de Itatiaia, estado do Rio de Janeiro: ocorrencias de fluorita e minerais de ETR. Anuario do Instituto de Geociencias, UFRJ, 37, 415.Google Scholar
Platt, R.G., Wall, F., Williams, C.T and Woolley, A.R. (1987) Zirconolite, chevkinite and other rare earth minerals from nepheline syenites and peralkaline granites and syenites of the Chilwa alkaline province, Malawi. Mineralogical Magazine, 51, 253263.CrossRefGoogle Scholar
Platt, R.G. and Woolley, A.R. (1988) The mafic mineralogy of the peralkaline syenites and granites of the Mulanje complex, Malawi. Mineralogical Magazine, 50, 8599.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3175 in: Electron Probe Quantitation (K.F.J. Heinrich and D.E. Newbury, editors). Plenum Press, New York.CrossRefGoogle Scholar
Renne, P.R., Ernesto, M., Pacca, I.G., Coe, R.S., Glen, J.M., Prevot, M. and Perrin, M. (1992) The age of Paraná flood volcanism, rifting of Gondwanaland, and the Jurassic-Cretaceous boundary. Science, 258, 975979.CrossRefGoogle ScholarPubMed
Ryabchikov, I.D. and Kogarko L.N. (2006) Magnetite compositions and oxygen fugacities of the Khibina magmatic system. Lithos, 91, 35–5.CrossRefGoogle Scholar
Riccomini, C., Velazquez, V.F. and Gomes, C.B. (2005) Tectonic controls of the Mesozoic and Cenozoic alkaline magmatism in the central-southeastern Brazilian Platform. Pp. 3155 in: Mesozoic to Cenozoic Alkaline Magmatism in the Brazilian Platform (Comin-Chiaramonti, P. and Gomes, C.B., editors). FAPESP, São Paulo, Brazil.Google Scholar
Ridolfi, F., Renzulli, A., Macdonald, R. and Upton, B.G.J. (2006) Peralkaline syenite autoliths from Kilombe volcano, Kenya Rift Valley: evidence for subvolcanic interaction with carbonatitic fluids. Lithos, 91, 373392.CrossRefGoogle Scholar
Ronga, F., Lustrino, M., Marzoli, A. and Melluso, L. (2010) Petrogenesis of a basalt-comendite-pantellerite rock suite: the Boseti volcanic complex, Main Ethiopian Rift. Mineralogy and Petrology, 98, 227243.CrossRefGoogle Scholar
Rønsbo, J.G. (2008) Apatite in the Ilimaussaq alkaline complex: occurrence, zonation and compositional variation. Lithos, 160, 7182.CrossRefGoogle Scholar
Rønsbo, J.G., Sørensen, H., Roda-Robles, E., Fontan, F. and Monchoux, P. (2014) Rinkite-nacareniobsite-(Ce) solid solution series and hainite from the Ilímaussaq alkaline complex: occurrence and compositional variation. Bulletin of the Geological Society of Denmark, 62, 115.CrossRefGoogle Scholar
Sauerzapf, U., Lattard, D., Burchard, M. and Engelmann, R. (2008) The titanomagnetite-ilmenite equilibrium: new experimental data and thermo-oxybarometric application to the crystallization of basic to intermediate rocks. Journal of Petrology, 49, 11611185.CrossRefGoogle Scholar
Schmitt, A.K., Emmermann, R., Trumbull, R.B., Buhn, B. and Henjes-Kunst F. (2000) Petrogenesis and 40Ar-39Ar geochronology of the Brandberg complex, Namibia: evidence for a major mantle contribution in metaluminous and peralkaline granites. Journal of Petrology, 41, 12071239.CrossRefGoogle Scholar
Sichel, S.E., Motoki, A., Iwanuch, W., Vargas, T., Aires, J. R., Pereira de Melo, D., Motoki, K.F., Balmant, A. and Rodrigues, J.G. (2012) Cristalização fracionada e assimilação da crosta continental pelos magmas de rochas alcalinas félsicas do estado do Rio de Janeiro, Brazil. Anuário do Instituto de Geociências, 35, 84104.Google Scholar
Sonoki, I.K. and Garda, G.M. (1988) Idades K-Ar de rochas alcalinas do Brasil Meridional e Paraguai oriental: compilaçao e adaptaçao às novas constantes de decaimento. Boletim IG USP, Serie Cientifica, 19, 6398.CrossRefGoogle Scholar
Sørensen, H. (1997) The agpaitic rocks-an overview. Mineralogical Magazine, 61, 485–98.CrossRefGoogle Scholar
Spinelli, F.P. and Gomes, C.B. (2008) A occorrencia alcalina de Cananeia, litoral sul do estado de Sao Paulo: petrologia e geoquimica. Revista Brasileira de Geociencias, 39, 304323.CrossRefGoogle Scholar
Thompson, R.N., Gibson, S.A., Mitchell, J.G., Dickin, A. P., Leonardos, O.H., Brod, J.A. and Greenwood, J.C. (1998) Migrating Cretaceous-Eocene magmatism in the Serra do Mar alkaline Province, SE Brazil: melts from the deflected Trindade mantle plume. Journal of Petrology, 39, 14931526.CrossRefGoogle Scholar
Troll, V.R., Sachs, P.M., Schmincke, H.-U. and Sumita, M. (2003) The REE-Ti mineral chevkinite in comenditic magmas from Gran Canaria, Spain: a SYXRF-probe study. Contributions to Mineralogy and Petrology, 145, 730741.CrossRefGoogle Scholar
Tupinambá, M., Heilbron, M., Valeriano, C., Porto Junior, R., Blanco de Dios F., Machado, N., Silva, L.G.E. and Horta de Almeida, J.C. (2012) Juvenile contribution of the Neoproterozoic Rio Negro Magmatic Arc (Ribeira Belt, Brazil): implications for Western Gondwana amalgamation. Gondwana Research, 21, 422–38.CrossRefGoogle Scholar
Turner, S., Regelous, M., Kelley, S., Hawkesworth, C.J. and Mantovani, M.S.M. (1994) Magmatism and continental break-up in the South Atlantic: High precision 40Ar-39Ar geochronology. Earth and Planetary Science Letters, 121, 333348.CrossRefGoogle Scholar
Ulbrich, H.H.G.J. and Gomes, C.B. (1981) Alkaline igneous rocks from continental Brazil. Earth-Science Reviews, 17, 135154.CrossRefGoogle Scholar
Valença, J.G. (1980) Geology, petrography and petrogenesis of some alkaline igneous complexes of Rio de Janeiro State, Brazil. PhD Thesis, University of Western Ontario, Canada, 248 pp.Google Scholar
Vilalva, F.C.J., Vlach, S.R.F. and Simonetti, A. (2013) Nacareniobsite-(Ce) and britholite-(Ce) in peralkaline granites from the Morro Redondo complex, Graciosa Province, Southern Brazil: occurrence and compositional data. The Canadian Mineralogist, 51, 313332.CrossRefGoogle Scholar
Vlach, S.R.F. and Gualda, G. (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos, 97, 98121.CrossRefGoogle Scholar
Woolley, A.R. and Platt, R.G. (1986) The mineralogy of nepheline syenite complexes from the northern part of the Chilwa Province, Malawi. Mineralogical Magazine, 50, 597610.CrossRefGoogle Scholar
Woolley, A.R. and Platt, R.G. (1988) The peralkaline nepheline syenites of the Junguni intrusion, Chilwa province, Malawi. Mineralogical Magazine, 52, 425–33.CrossRefGoogle Scholar
Xirouchakis, D. and Lindsley, D.H. (1998) Equilibria among titanite, hedenbergite, fayalite, quartz, ilmen-ite, and magnetite: experiments and internally consistent thermodynamic data for titanite. American Mineralogist, 83, 712725.CrossRefGoogle Scholar
Supplementary material: PDF

Melluso et al. supplementary material

Supplementary Figures

Download Melluso et al. supplementary material(PDF)
PDF 1.5 MB
Supplementary material: PDF

Melluso et al. supplementary material

Supplementary Files contents

Download Melluso et al. supplementary material(PDF)
PDF 12.1 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Tables

Download Melluso et al. supplementary material(File)
File 1.4 MB