Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T03:37:28.048Z Has data issue: false hasContentIssue false

Recent advances in clean-up strategies of waters polluted with sulfonamide antibiotics: a review of sorbents and related properties

Published online by Cambridge University Press:  05 July 2018

A. Martucci
Affiliation:
Department of Physics and Earth Sciences, University of Ferrara, Via G. Saragat 1, 44100 Ferrara, Italy
I. Braschi*
Affiliation:
Department of Agricultural Sciences, University of Bologna, Viale G. Fanin 44, 40127 Bologna, Italy Gruppo di Ricerca Fitofarmaci e Ambiente (GRIFA), Via Ospedale 72, 09124 Cagliari, Italy
L. Marchese
Affiliation:
Dipartimento di Scienze e Innovazione Tecnologica and Centro NanoSiSTeMI, Universita` del Piemonte Orientale A. Avogadro, Via T. Michel 11, 15121 Alessandria, Italy
S. Quartieri
Affiliation:
Department of Physics and Earth Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina S. Agata, Italy
*

Abstract

Several strategies are available to reduce or eliminate recalcitrant sulfonamide antibiotics (sulfa drugs) from aqueous media. These contaminants are bioactive and ubiquitous pollutants of soils and watercourses and are known to induce bacterial resistance. Here the biological, chemical and physical methods developed over the last 5 years to decontaminate waters polluted with sulfa drugs are reviewed with special attention to procedures that make use of porous adsorbent materials and their applicability to real waters.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abellán, M.N., Bayarri, B., Giménez, J. and Costa, J., (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2 . Applied Catalysis B: Environmental, 74, 233241.CrossRefGoogle Scholar
Adamek, E., Baran, W., Ziemiansk, J. and Sobczak, A. (2012) Effect of FeCl3 on sulfonamide removal and reduction of antimicrobial activity of wastewater in a photocatalytic process with TiO2 . Applied Catalysis B: Environmental, 126, 2938.CrossRefGoogle Scholar
Alberti, A., Davoli, P. and Vezzalini, G. (1986) The crystal structure refinement of a natural mordenite. Zeitschrift für Kristallographie, 175, 249256.Google Scholar
Altare, C.R., Bowman, R.S., Katz, L.E., Kinney, K.A., and Sullivan, E.J., (2007) Regeneration and longterm stability of surfactant-modified zeolite for removal of volatile organic compounds from produced water. Microporous and Mesoporous Materials, 105, 305316.CrossRefGoogle Scholar
Amorim, R., Vilaça, N., Martinho, O., Reis, R.M., Sardo, M., Rocha, J., Fonseca, A.M., Baltazar, F. and Neves, I.C., (2012) Zeolite structures loading with an anticancer compound as drug delivery systems. The Journal of Physical Chemistry C, 116, 2564225650.CrossRefGoogle Scholar
Arletti, R., Martucci, A., Alberti, A., Pasti, L., Nassi, M. and Bagatin, R. (2012) Location of MTBE and toluene in the channel system of the zeolite mordenite: adsorption and host–guest interactions. Journal of Solid State Chemistry, 194, 135142.CrossRefGoogle Scholar
Baerlocher, C., McCusker, L.B., and Olson, D.H., (2007) Atlas of Zeolite Framework Types, 6th Revised Edition. Elsevier, Amsterdam.Google Scholar
Baran, W., Sochacka, J. and Wardas, W. (2006) Toxicity and biodegradability of sulfonamides and products of their photocatalytic degradation in aqueous solutions. Chemosphere, 65, 12951299.CrossRefGoogle ScholarPubMed
Baran, W., Adamek, E., Sobczak, A. and Makowski, A. (2009) Photocatalytic degradation of sulfa drugs with TiO2, Fe salts and TiO2/FeCl3 in aquatic environment – kinetics and degradation pathway. Applied Catalysis B: Environmental, 90, 516525.CrossRefGoogle Scholar
Bergaya, F. and Lagaly, G. (2013) Handbook of Clay Science, 2nd Edition. Elsevier, Amsterdam. Białk-Bielinska, A., Stolte, S., Matzke, M., Fabianska, A., Maszkowska, J., Kołodziejska, M., Liberek, B., Stepnowski, P. and Kumirska, J. (2012) Hydrolysis of sulphonamides in aqueous solutions. Journal of Hazardous Materials, 221–222, 264274.Google Scholar
Bish, D.L., and Ming, D.W., (editors) (2001) Natural Zeolites: Occurrence, Properties, Applications. Reviews in Mineralogy & Geochemistry, 45. Mineralogical Society of America and the Geochemical Society, Washington, DC.Google Scholar
Blasioli, S., Martucci, A., Paul, G., Gigli, L., Cossi, M., Johnston, C.T., Marchese, M. and Braschi, I. (2014) Removal of sulfamethoxazole sulfonamide antibiotic from water by high silica zeolites: a study of the involved host–guest interactions by a combined structural, spectroscopic, and computational approach. Journal of Colloid and Interface Science, 419, 148159.CrossRefGoogle ScholarPubMed
Bowman, R.S (2003) Applications of surfactant-modified zeolites to environmental remediation. Microporous and Mesoporous Materials, 61, 4356.CrossRefGoogle Scholar
Braschi, I., Blasioli, S., Gigli, L., Gessa, C.E., Alberti, A. and Martucci, A., (2010a) Removal of sulfonamide antibiotics from water: evidence of adsorption into an organophilic zeolite Y by its structural modifications. Journal of Hazardous Materials, 17, 218225.CrossRefGoogle Scholar
Braschi, I., Gatti, G., Paul, G., Gessa, C.E., Cossi, M. and Marchese, L. (2010b) Sulfonamide antibiotics embedded in high silica zeolite Y: a combined experimental and theoretical study of host-guest and guest-guest interactions. Langmuir, 26, 95249532.CrossRefGoogle Scholar
Braschi, I., Gatti, G., Bisio, C., Berlier, G., Sacchetto, V., Cossi, M. and Marchese, L. (2012) The role of silanols in the interactions between methyl tert-butyl ether and high silica faujasite Y: an infrared spectroscopy and computational model study. Journal of Physical Chemistry C, 116, 69436952.CrossRefGoogle Scholar
Braschi, I. Blasioli, S., Cossi, M., Marchese, L., Martucci, A. and Quartieri., S. (2013a) Adsorption of sulfonamide antibiotics into high silica zeolites from water: a combined structural, spectroscopic and computational approach. Pp. 430431 in: Zeolites and ordered porous materials: bridging the gap between nanosciences and technology. 17th International Zeolite Conference, Moscow, 712 July, Book of Abstracts.Google Scholar
Braschi, I., Paul, G., Gatti, G., Cossi, M. and Marchese, L. (2013b) Embedding monomers and dimers of sulfonamide antibiotics into high silica zeolite Y: an experimental and computational study of the tautomeric forms involved. RSC Advances, 3, 74277437.CrossRefGoogle Scholar
Cappelletti, P., Rapisardo, G., de Gennaro, B., Colella, A., Langella, A., Graziano, S.F., Bish, D.L., and de Gennaro, M. (2011) Immobilization of Cs and Sr in aluminosilicate matrices derived from natural zeolites. Journal of Nuclear Materials, 414, 451457.CrossRefGoogle Scholar
Chen, G., Cheng, K.Y., Ginige, M.P., and Kaksonen, A.H., (2012) Aerobic degradation of sulfanilic acid using activated sludge. Water Research, 46, 145151.CrossRefGoogle ScholarPubMed
Chmielewská, E. (2012) Natural zeolite a versatile commodity – some retrospectives in water cleanup processes. Desalination and Water Treatment, 41, 335341.CrossRefGoogle Scholar
Choi, K.-J., Son, H.-J. and Kim, S.-H. (2007) Ionic treatment for removal of sulphonamide and tetracycline classes of antibiotic. Science of the Total Environment, 387, 247256.CrossRefGoogle Scholar
Choi, K.-J., Kim, S.-G. and Kim, S.-H. (2008) Removal of tetracycline and sulfonamide classes of antibiotic compound by powdered activated carbon. Environmental Technology, 29, 333342.CrossRefGoogle ScholarPubMed
Dakovic, A., Tomasevic-Canovic, M., Rottinghaus, G., Dondur, V. and Masic, Z. (2003) Adsorption of ochratoxin A on octadecyldimethyl benzyl ammonium exchanged-clinoptilolite-heulandite tuff. Colloid Surface B Biointerfaces, 30, 157165.CrossRefGoogle Scholar
Dakovic, A., Tomasevic-Canovic, M., Rottinghaus, G.E., Matijasevic, S. and Sekulic, Z. (2007) Fumonisin B-1 adsorption to octadecyldimethylbenzyl ammoniummodified clinoptilolite-rich zeolitic tuff, Microporous and Mesoporous Materials, 105, 285290.CrossRefGoogle Scholar
Damjanovic, L., Rakic, V., Rac, V., Stosic, D. and Auroux, A. (2010) The investigation of phenol removal from aqueous solutions by zeolites as solid adsorbents, Journal of Hazardous Materials, 184, 477484.CrossRefGoogle ScholarPubMed
Dantas, G., Sommer, M., Oluwasegun, R.D., and Church, G.M., (2008) Bacteria subsisting on antibiotics. Science, 320, 100103.CrossRefGoogle ScholarPubMed
Datt, A., Fields, D. and Larsen, S.C., (2012) An experimental and computational study of the loading and release of aspirin from zeolite HY. The Journal of Physical Chemistry C, 116, 2138221390.CrossRefGoogle Scholar
Datt, A., Burns, E.A., Dhuna, N.A., and Larsen, S.C., (2013) Loading and release of 5–fluorouracil from HY zeolites with varying SiO2/Al2O3 ratios. Microporous and Mesoporous Materials, 167, 182187.CrossRefGoogle Scholar
Dirany, A., Sirés, I., Oturan, N. and Oturan, M.A., (2010) Electrochemical abatement of the antibiotic sulfamethoxazole from water. Chemosphere, 81, 594602.CrossRefGoogle ScholarPubMed
Dirany, A., Sirés, I., Oturan, N., Ozcan, A. and Oturan, M.A., (2012) Electrochemical treatment of the antibiotic sulfachloropyridazine: Kinetics, reaction pathways, and toxicity evolution. Environmental Science & Technology, 46(7), 40744082.CrossRefGoogle ScholarPubMed
Doretto, K.M., and Rath, S. (2013) Sorption of sulfadiazine on Brazilian soils. Chemosphere, 90, 20272034.CrossRefGoogle ScholarPubMed
Dresselhaus, M.S., Dresselhaus, G. and Avouris, P. (editors) (2001) Carbon Nanotubes: Synthesis, Structure, Properties, and Applications. Springer- Verlag, Berlin.CrossRefGoogle Scholar
Essington, M.E., and Anderson, R.M., (2008) Competitive adsorption of 2-ketogluconate and inorganic ligands onto gibbsite and kaolinite. Soil Science Society of America Journal, 72, 595604.CrossRefGoogle Scholar
Essington, M.E., Lee, J. and Seo, Y. (2010) Adsorption of antibiotics by montmorillonite and kaolinite. Soil Science Society of America Journal, 74, 15771588.CrossRefGoogle Scholar
Ferro, S., Trentin, A.R., Caffieri, S. and Ghisi, R. (2010) Antibacterial sulfonamides: accumulation and effects in barley plants. Fresenius Environmental Bulletin, 19, 20942099.Google Scholar
Franklin, R.E., (1951) Crystallite growth in graphitizing and non-graphitizing carbons. Proceedings of the Royal Society of London, A209, 196218.Google Scholar
Fu, H., Yang, L., Wan, Y., Xu, Z. and Zhu, D. (2011) Adsorption of pharmaceuticals to microporous activated carbon treated with potassium hydroxide, carbon dioxide, and steam. Journal of Environmental Quality, 40, 18861894.CrossRefGoogle ScholarPubMed
Fukahori, S., Fujiwara, T., Ito, R. and Funamizu, N. (2011) pH-Dependent adsorption of sulfa drugs on high silica zeolite: modeling and kinetic study. Desalination, 275, 237242.CrossRefGoogle Scholar
Fukahori, S., Fujiwara, T., Funamizu, N., Matsukawa, K. and Ito, R. (2013) Adsorptive removal of sulfonamide antibiotics in livestock urine using the high-silica zeolite HSZ-385. Water Science and Technology, 67(2), 319325.CrossRefGoogle ScholarPubMed
Gao, J. and Pedersen, J.A., (2005) Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 39, 95099516.CrossRefGoogle ScholarPubMed
Gao, J., Hedman, C., Liu, C., Guo, T. and Pedersen, J.A., (2012a) Transformation of sulfamethazine by manganese oxide in aqueous solution. Environmental Science & Technology, 46, 26422651.CrossRefGoogle Scholar
Gao, Y.-q., Gao, N.-y., Deng, Y., Yang, Y.-q. and Ma, Y. (2012b) Ultraviolet (UV) light-activated persulfate oxidation of sulfamethazine in water. Chemical Engineering Journal 195–196, 248253.CrossRefGoogle Scholar
García-Galán, M.J., Rodríguez-Rodríguez, C.E., Vicent, T., Caminal, G., Díaz-Cruz, M.S., and Barceló D. (2011) Biodegradation of sulfamethazine by Trametes versicolor: removal from sewage sludge and identification of intermediate products by UPLC–QqTOF-MS. Science of the Total Environment, 409, 55055512.CrossRefGoogle ScholarPubMed
Gonçalves, A.G., Órfa˜o, J.J.M. and Pereira, M.F.R. (2013) Ozonation of sulfamethoxazole promoted by MWCNT. Catalysis Communications 35, 8287.CrossRefGoogle Scholar
Grimmett, M.E., (2013) Removal of sulfamethazine by hypercrosslinked adsorbents in aquatic systems. Journal of Environmental Quality, 42, 29.CrossRefGoogle ScholarPubMed
Harris, P.J.F., Liu, Z. and Suenaga, K. (2008) Imaging the atomic structure of activated carbon. Journal of Physics: Condensed Matter, 20(36), 362201362206.Google Scholar
Homem, V. and Santos, L. (2011) Degradation and removal methods of antibiotics from aqueous matrices – A review. Journal of Environmental Management, 92, 23042347.CrossRefGoogle ScholarPubMed
Huang, M., Tian, S., Chen, D., Zhang, W., Wu, J. and Chen L. (2012) Removal of sulfamethazine antibiotics by aerobic sludge and an isolated Achromobacter sp. S-3. Journal of Environmental Sciences, 24(9), 15941599.CrossRefGoogle Scholar
Iijima, S. and Ichihashi, T. (1993) Single-shell carbon nanotubes of 1-nm diameter. Nature, 363, 603605.CrossRefGoogle Scholar
Ji, L., Chen, W., Zheng, S., Xu, Z. and Zhu, D. (2009) Adsorption of sulfonamide antibiotics to multiwalled carbon nanotubes. Langmuir, 25(19), 1160811613.CrossRefGoogle ScholarPubMed
Ji, L., Chen, W., Zheng, S., Xu, Z. and Zhu, D. (2010) Adsorption of monoaromatic compounds and pharmaceutical antibiotics on carbon nanotubes activated by KOH etching. Environmental Science & Technology, 44 (16), 64296436.CrossRefGoogle ScholarPubMed
Ji, L., Wan, Y., Zheng, S. and Zhu D. (2011) Adsorption of tetracycline and sulfamethoxazole on crop residue-derived ashes: implication for the relative importance of black carbon to soil sorption. Environmental. Science & Technology, 45, 55805586.CrossRefGoogle Scholar
Jovanovic, V., Dondur, V., Damjanovic, L., Zakrzewska, J. and Tomasevic-Canovic, M., (2006) Improved materials for environmental application: Surfactant-modified zeolites, recent developments. Advanced Materials and Processes, 518, 223228.Google Scholar
Kahle, M. and Stamm, C. (2007a) Time and pHdependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite. Chemosphere, 68, 12241231.CrossRefGoogle Scholar
Kahle, M. and Stamm, C. (2007b) Sorption of the veterinary antimicrobial sulfathiazole to organic materials of different origin. Environmental Science & Technology, 41(1), 132138.CrossRefGoogle Scholar
Kamiya, N., Iwama, W., Kudo, T., Nasuno, T., Fujiyama, S., Nishi, K. and Yokomori, Y. (2011) Determining the structure of a benzene7.2-silicalite- 1 zeolite using a single-crystal X-ray method. Acta Crystallographyca B, 67, 508515.CrossRefGoogle ScholarPubMed
Kaniou, S., Pitarakis, K., Barlagianni, I. and Poulios, I. (2005) Photocatalytic oxidation of sulfamethazine. Chemosphere, 60, 372380.CrossRefGoogle ScholarPubMed
Kawame, N., Ikuta, D., Kanazawa, H., Ito, K., Gunter, M.E., Boisen, M.B., and Tamada, O. (2007) Superstructure of Challis mordenite with doubled monoclinic unit cell. American Mineralogist, 92, 892897.CrossRefGoogle Scholar
Kim, S.H., Shon, H.K., Ngo, H.H., (2010) Adsorption characteristics of antibiotics trimethoprim on powered and granular activated carbon. Journal of Industrial and Engineering Chemistry, 16, 344349.CrossRefGoogle Scholar
Kosutic, K., Dolar, D., Aperger, D. and Kunst, B. (2007) Removal of antibiotic from model wastewater by RO/NF membrane. Separation and Purification Technology, 53, 244249.CrossRefGoogle Scholar
Koyuncu, I., Arikan, O.A., Wiesner, M.R., and Rice, C. (2008) Removal of hormones and antibiotics by nanofiltration membranes. Journal of Membrane Science, 309, 94101.CrossRefGoogle Scholar
Kragovic, M., Dakovic, A., Sekulic, Z., Trgo, M., Ugrina, M., Peric, J. and Gatta, G.D., (2012) Removal of lead from aqueous solutions by using the natural and Fe(III)-modified zeolite. Applied Surface Science, 258, 3667– 3673.CrossRefGoogle Scholar
Kuc, A. and Heine, T. (2009) Shielding nanowires and nanotubes with imogolite: a route to nanocables. Advanced Materials, 21, 43534356.CrossRefGoogle ScholarPubMed
Kuleyin, A. (2007) Removal of phenol and 4- chlorophenol by surfactant-modified natural zeolite. Journal of Hazardous Materials, 144, 307315. Kümmerer, K. (2009a) Antibiotics in the aquatic environment – A review – Part I. Chemosphere 75(4), 417434.CrossRefGoogle ScholarPubMed
Kümmerer, K. (2009b) Antibiotics in the aquatic environment – A review – Part II Chemosphere 75(4), 435441.Google Scholar
Kuo, C.Y., and Lin, H.Y., (2009) Adsorption of aqueous cadmium(II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment, Desalination, 249, 792796.CrossRefGoogle Scholar
Leardini, L., Martucci, A., Braschi, I., Blasioli, S., Arletti, R. and Quartieri, S. (2014) Regeneration of high-silica zeolites after sulfamethoxazole antibiotic adsorption: a combined in situ high-temperature synchrotron X-ray powder diffraction and thermal degradation study. Mineralogical Magazine, 78, 11411159.CrossRefGoogle Scholar
Lee, S.M., and Tiwari, D. (2012) Organo and inorganoorgano- modified clays in the remediation of aqueous solutions: an overview. Applied Clay Science, 59–60, 84102.CrossRefGoogle Scholar
Le-Minh, N., Khan, S.J., Drewes, J.E., and Stuetz, R.M., (2010) Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44(15), 42954323.CrossRefGoogle ScholarPubMed
Li, X., Yu, H., Xu, S. and Hua, R. (2013) Uptake of three sulfonamides from contaminated soil by pakchoi cabbage. Ecotoxicology and Environmental Safety, 92, 297302.CrossRefGoogle ScholarPubMed
Li, Z.H., Burt, T. and Bowman, R.S., (2000) Sorption of ionizable organic solutes by surfactant modified zeolite, Environmental Science & Technology, 34, 37563760.CrossRefGoogle Scholar
Mansilla, H.D., (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Research, 44, 25332540.Google Scholar
Margeta, K., Vojnovic, B. and Zabukovec Logar, N. (2011) Development of natural zeolites for their use in water-treatment systems. Recent Patents on Nanotechnology, 5, 8999.CrossRefGoogle ScholarPubMed
Marra, G.L., Artioli, G., Fitch, A.N., Milanesio, M. and Lamberti, C. (2000) Neutron powder diffraction study of orthorhombic and monoclinic defective silicalite. Microporous and Mesoporous Matererials, 40, 8594.CrossRefGoogle Scholar
Marsh, H. and Rodríguez-Reinoso, F., (2006) Activated Carbon, Elsevier, Amsterdam.CrossRefGoogle Scholar
Martucci, A., Pasti, L., Marchetti, N., Cavazzini, A., Dondi, F., Alberti, A. (2012a) Adsorption of pharmaceuticals from aqueous solutions on synthetic zeolites. Microporous and Mesoporous Materials, 148, 174184.CrossRefGoogle Scholar
Martucci, A., Pasti, L., Nassi, M. Alberti, A., Arletti, R., Bagatin, R., Vignola, R. and Sticca, R. (2012b) Adsorption mechanism of 1,2-dichloroethane into an organophilic zeolite mordenite: a combined diffractometric and gas chromatographic study. Microporous and Mesoporous Materials, 151, 358367.CrossRefGoogle Scholar
Martucci, A., Cremonini, M.A., Blasioli, S., Gigli, L., Gatti, G., Marchese, L. and Braschi, I. (2013) Adsorption and reaction of sulfachloropyridazine sulfonamide antibiotic on a high silica mordenite: A structural and spectroscopic combined study. Microporous and Mesoporous Materials, 170, 274286.CrossRefGoogle Scholar
McCusker, L.B., Liebau, F. and Hengelhardt, G. (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts (IUPAC Recommendations 2001), Pure Applied Chemistry, 73(2), 381394.CrossRefGoogle Scholar
Mellon, M., Benbrook, C. and Benbrook, K.L., (2001) Hogging it: Estimates of antimicrobial abuse in l ivestock. UCS Publications, Cambridge, Massachusetts, USA.Google Scholar
Michael, I., Rizzo, L., McArdell, C.S., Manaia, C.M., Merlin, C., Schwartz, T., Dagot, C. and Fatta- Kassinos, D. (2013) Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review. Water Research, 47(3), 957995.CrossRefGoogle ScholarPubMed
Michelini, L., Reichel, R., Werner, W., Ghisi, R. and Thiele-Bruhn, S., (2012) Sulfadiazine uptake and effects on Salix fragilis L. and Zea mays L. plants. Water, Air, & Soil Pollution, 223, 52435257.CrossRefGoogle Scholar
Mompelat, S., LeBot, B. and Thomas, O. (2009) Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environment International, 35, 803814.CrossRefGoogle ScholarPubMed
Motoyama, M., Nakagawa, S., Tanoue, R., Sato, Y., Nomiyama, K. and Shinohara, R. (2011) Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere, 84, 432438.CrossRefGoogle ScholarPubMed
Müller, E., Schüssler, W., Horn, H. and Lemmer, H. (2013) Aerobic biodegradation of the sulfonamide antibiotic sulfamethoxazole by activated sludge applied as co-substrate and sole carbon and nitrogen source. Chemosphere, 92(8), 969978.CrossRefGoogle ScholarPubMed
Nishi, K., Hidaka, A. and Yokomori, Y. (2005) Structure of toluene 6.4-ZSM-5 and the toluene disproportionation reaction on ZSM-5. Acta Crystallographica B, 61, 160163.CrossRefGoogle ScholarPubMed
Ogata, F., Tominaga, H., Kangawa, M., Inoue, K. and Kawasaki, N. (2012) Removal of sulfa drugs by sewage treatment in aqueous solution systems: activated carbon treatment and ozone oxidation. Journal of Oleo Science, 61, 217225.CrossRefGoogle ScholarPubMed
Oller, I., Malato, S. and Sánchez-Pérez, J.-A. (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – A review. Science of the Total Environment, 409, 41414166.CrossRefGoogle ScholarPubMed
Oturan, N., Sirés, I., Oturan, M.A., and Brillas, E. (2009) Degradation of pesticides in aqueous medium by electro-Fenton and related methods. A review. Journal of Environmental Engineering and Landscape Management, 19, 235255.Google Scholar
Ozdemir, O., Armagan, B., Turan, M. and Celik, M.S., (2004) Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62, 4960.CrossRefGoogle Scholar
Pan, B and Xing, B. (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Enviromental Science & Technology, 42, 90059013.CrossRefGoogle ScholarPubMed
Pasti, L., Martucci, A., Nassi, M., Cavazzini, A., Alberti, A. and Bagatin, R. (2012) The role of water in DCE adsorption from aqueous solutions onto hydrophobic zeolites. Microporous and Mesoporous Materials, 160, 182193.CrossRefGoogle Scholar
Pasti, L., Sarti, E., Cavazzini, A., Marchetti, N., Dondi, F. and Martucci, A. (2013) Factors affecting drug adsorption on beta zeolites. Journal of Separation Science, 36, 1604–161.CrossRefGoogle ScholarPubMed
Pérez-Moya, M., Graells, M., Castells, G., Amigó , J., Ortega, E., Buhigas, G. and Pérez, L.M., (2010) Characterization of the degradation performance of the sulfamethazine antibiotic by photo-Fenton process. Water Research, 44, 25332540.CrossRefGoogle ScholarPubMed
Pinna, V., Castaldi, P., Deiana, P., Pusino, A. and Garau, G. (2012) Sorption behavior of sulfamethazine on unamended and manure-amended soils and shortterm impact on soil microbial community. Ecotoxicology and Environmental Safety, 84, 234242.CrossRefGoogle Scholar
Pourbaix, M., (1974) Atlas of Electrochemical Equilibria in Aqueous Solutions. 2nd English edition, p. 112. National Association of Corrosion Engineers, Houston, Texas, USA.Google Scholar
Pyrzynska, K. (2008) Carbon nanotubes as a new solidphase extraction material for removal and enrichment of organic pollutants in water. Separation & Purification Reviews, 37, 372389.CrossRefGoogle Scholar
Radjenovic, J., Petrovic, M., Ventura, F. and Barceló , D. (2008) Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Research, 42, 36013610.CrossRefGoogle ScholarPubMed
Rist, L.P., and Harrison, D.P., (1985) Surface area and pore development during lignite activation. Fuel, 64, 291296.CrossRefGoogle Scholar
Robertson, J. (1986) Amorphous carbon. Advances in Physics, 35, 317374.CrossRefGoogle Scholar
Rodríguez-Rodríguez, C.E., García-Galán, M.J., Blánquez, P., Díaz-Cruz, M.S., Barceló , D., Caminal, G. and Vicent, T. (2012) Continuous degradation of a mixture of sulfonamides by Trametes versicolor and identification of metabolites from sulfapyridine and sulfathiazole. Journal of Hazardous Materials, 213–214, 347– 354.Google Scholar
Sacchetto, V., Gatti, G., Paul, G., Braschi, I., Berlier, G., Cossi, M., Marchese, L., Bagatin, R. and Bisio, C. (2013) The interactions of methyl tert-butyl ether on high silica zeolites: a combined experimental and computational study. Physical Chemistry Chemical Physics, 15, 1327513287.CrossRefGoogle ScholarPubMed
Saidi, I., Soutrel, I., Fourcade, F., Amrane, A., Floner, D., Bellakhal, N. and Geneste, F. (2013) Flow electrolysis on high surface electrode for biodegradability enhancement of sulfamethazine solutions. Journal of Electroanalytical Chemistry, 707, 122128.CrossRefGoogle Scholar
Schlenker, J.L., Pluth, J.J., and Smith, J.V., (1979) Positions of cations and molecules in zeolites with the mordenite-type framework X dehydrated calcium hydrogen mordenite. Materials Research Bulletin, 14, 961966.CrossRefGoogle Scholar
Schmidt, M.W.I. and Noack, A.G., (2000) Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14, 777793.CrossRefGoogle Scholar
Schwarz, J., Aust, M.-O. and Thiele-Bruhn, S., (2010) Metabolites from fungal laccase-catalysed transformation of sulfonamides. Chemosphere, 81, 14691476.CrossRefGoogle ScholarPubMed
Schwarz, J., Thiele-Bruhn, S., Eckhardt, K.-U. and Schulten, H.-R.(2012) Sorption of sulfonamide antibiotics to soil organic sorbents: batch experiments with model compounds and computational chemistry. ISRN Soil Science, DOI:10.5402/2012/ 159189.CrossRefGoogle Scholar
Simoncic, P. and Armbruster, T. (2004) Peculiarity and defect structure of the natural and synthetic zeolite mordenite; a single-crystal X-ray study. American Mineralogist, 89, 421431.CrossRefGoogle Scholar
Srinivasan, K.R., and Fogler, H.S., (1990) Use of inorgano-organo-clays in the removal of priority pollutants from industrial wastewaters: adsorption of benzo(a)pyrene and chlorophenols from aqueous solutions. Clays and Clay Minerals, 38, 287293.CrossRefGoogle Scholar
Stackelberg, P.E., Gibs, J., Furlong, E.T., Meyer, M.T., Zaugg, S.D., and Lippincott, R.L., (2007) Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Science of the Total Environment, 377, 255272.CrossRefGoogle ScholarPubMed
Stout, S.A., Cho, Y. and Komarneni, S. (2006) Uptake of cesium and strontium cations by potassiumdepleted phlogopite. Applied Clay Science, 31, 306313.CrossRefGoogle Scholar
Streat, M. and Sweetland, L.A., (1998) Removal of pesticides from water using hypercrosslinked polymer phases: Part 2 – Sorption studies. Process Safety and Environmental Protection, 76, 127134.CrossRefGoogle Scholar
Sukul, P., Lamshöft, M., Zühlke, S. and Spiteller, M. (2008) Photolysis of (14)C sulfadiazine in water and manure. Chemosphere, 71, 717725.CrossRefGoogle Scholar
Szczepanowski, R., Burkhard Linke, B., Krahn, I., Gartemann, K.-H., Gützkow, T., Eichler, W. and Schlüter, A.A., (2009) Detection of 140 clinically relevant antibiotic-resistance genes in the plasmid metagenome of wastewater treatment plant bacteria showing reduced susceptibility to selected antibiotics. Microbiology, 155, 23062319.CrossRefGoogle ScholarPubMed
Teixidó, M., Hurtado, C., Pignatello, J.J., Beltrán, J.L., Granados, M. and Peccia, J. (2013) Predicting contaminant adsorption in black carbon (biochar)- amended soil for the veterinary antimicrobial sulfamethazine. Environmental Science & Technology, 47, 61976205.CrossRefGoogle ScholarPubMed
Thiele-Bruhn, S., Seibcike, T., Schulten, H.-R. and Leinweber, P. (2004) Sorption of sulfonamide pharmaceutical antibiotics on whole soils and particle-size fractions. Journal of Environmental Quality, 33, 13311342.CrossRefGoogle ScholarPubMed
Tian, Y., Gao, B., Wang, Y., Morales, V.L., Carpena, R.M., Huang, Q. and Yang, L. (2012a) Deposition and transport of functionalized carbon nanotubes in watersaturated sand columns. Journal of Hazardous Materials, 213–214, 265272.CrossRefGoogle Scholar
Tian, Y., Morales, V., Wu, L., Wang, Y., Munoz- Carpena, M., Cao, C., Huang, Q. and Yang, L. (2012b) Methods of using carbon nanotubes as filter media to remove aqueous heavy metals. Chemical Engineering Journal, 210, 557563.CrossRefGoogle Scholar
Tian, Y., Gao, B., Morales, V.L., Chen, H., Wang, Y. and Li, H. (2013) Removal of sulfamethoxazole and sulfapyridine by carbon nanotubes in fixed-bed columns. Chemosphere, 90, 25972605.CrossRefGoogle ScholarPubMed
Trovó, A.G., Nogueira, R.F.P., Agüera, A., Sirtori, C. and Fernández-Alba, A.R., (2009) Photodegradation of sulfamethoxazole in various aqueous media: persistence, toxicity and photoproducts assessment. Chemosphere, 77, 12921298.CrossRefGoogle ScholarPubMed
Tusevljak, N., Dutil, L., Rajic, A., Uhland, F.C., McClure, C., St-Hilaire, S., Reid-Smith, R.J., and McEwen, S.A., (2013) Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals. Zoonoses and Public Health, 60, 426436.CrossRefGoogle ScholarPubMed
Wang, A., Li, Y.-Y. and Estrada, A.L., (2011) Mineralization of antibiotic sulfamethoxazole by photoelectro-Fenton treatment using activated carbon fiber cathode and under UVA irradiation. Applied Catalysis B: Environmental, 102, 378386.CrossRefGoogle Scholar
Wang, S.B., and Peng, Y.L., (2010) Natural zeolites as effective adsorbents in water and wastewater treatment. Chemical Engineering Journal, 156, 1124.CrossRefGoogle Scholar
Weber, W.J. Jr., and van Vliet, B.M., (1981) Synthetic adsorbents and activated carbons for water treatment: overview and experimental comparisons. Journal of the American Water Works Association, 73, 420426.CrossRefGoogle Scholar
Wu, D., Pan, B., Wu, M., Peng, H., Zhang, D. and Xing, B. (2012) Coadsorption of Cu and sulfamethoxazole on hydroxylized and graphitized carbon nanotubes. Science of the Total Environment, 427–428, 247252.CrossRefGoogle Scholar
Xia, M., Li, A., Zhu, Z., Zhou, Q. and Yang, W. (2013) Factors influencing antibiotics adsorption onto engineered adsorbents. Journal of Environmental Sciences, 25, 12911299.CrossRefGoogle ScholarPubMed
Xu, L., Pan, L., Dai, J., Li, X., Hang, H., Cao, Z. and Yan, Y. (2012) Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. Journal of Hazardous Materials, 233–234, 4856.CrossRefGoogle Scholar
Xu, L., Sheng, G.-P., Mab, Y., Wangb, L.-F. and Yu H.- Q. (2013) Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system. Water Research, 47, 52985306.CrossRefGoogle ScholarPubMed
Xu, Z., Zhang, Q. and Fang, H.H.P. (2003) Applications of porous resin sorbents in industrial wastewater treatment and resource recovery. Critical Reviews in Environmental Science and Technology, 33, 363389.CrossRefGoogle Scholar
Yang, S.-F., Lin, C.-F., Lin, A.Y.-C. and Hong, P.-K. A. (2011a) Sorption and biodegradation of sulfonamide antibiotics by activated sludge: experimental assessment using batch data obtained under aerobic conditions. Water Research, 45, 33893397.CrossRefGoogle Scholar
Yang, W., Zheng, F., Xue, X. and Lu, Y. (2011b) Investigation into adsorption mechanisms of sulfonamides onto porous adsorbents. Journal of Colloid and Interface Science, 362, 503509.CrossRefGoogle Scholar
Yang, S.-F., Lin, C.-F., Lin, A.Y.-C. and Hong, P.-K.A. (2012) Fate of sulfonamide antibiotics in contact with activated sludge – Sorption and biodegradation. Water Research, 46, 13011308.CrossRefGoogle ScholarPubMed
Yargeau, V. and Leclair, C. (2008) Impact of operation conditions on decomposition of antibiotics during ozonation: a review. Science and Engineering, 30, 175188.Google Scholar
Zhang, B., Zhang, H., Li, X., Lei, X., Li, C., Yin, D., Fan, X. and Zhang, Q. (2013) Synthesis of BSA/ Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Materials Science and Engineering C, 33, 44014408.CrossRefGoogle ScholarPubMed
Zhang, D., Pan, B., Zhang, H., Ning, P. and Xing, B.S., (2010) Contribution of different sulfamethoxazole species to their overall adsorption on functionalized carbon nanotubes. Environmental Science & Technology, 44, 38063811.CrossRefGoogle ScholarPubMed
Zhang, D., Pan, B., Wu, M., Wang, B., Zhang, H., Peng, H., Wu, D. and Ning, P. (2011) Adsorption of sulfamethoxazole on functionalized carbon nanotubes as affected by cations and anions. Environmental Pollution, 159, 26162621.CrossRefGoogle ScholarPubMed
Zhao, J.G., Li, F.Y., and Jin, C.Q., (2009) Graphitization of activated carbon under high pressures and high temperatures. Solid State Communications, 149, 818821.CrossRefGoogle Scholar
Zheng, H., Wang, Z., Zhao, J., Herbert, S. and Xing, B. (2013) Sorption of antibiotic sulfamethoxazole varies with biochars produced at different temperatures. Environmental Pollution, 181, 6067.CrossRefGoogle ScholarPubMed