Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T08:45:42.011Z Has data issue: false hasContentIssue false

Raman spectroscopy of the minerals boléite,cumengéite, diaboléte and phosgenite — implications for the analysis of cosmetics of antiquity

Published online by Cambridge University Press:  05 July 2018

R. L. Frost*
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
P. A. Williams
Affiliation:
Centre for Industrial and Process Mineralogy, School of Science, Food and Horticulture, University of Western Sydney, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
W. Martens
Affiliation:
Centre for Instrumental and Developmental Chemistry, Queensland University of Technology, GPO Box 2434, Brisbane, Queensland 4001, Australia
*

Abstract

The application of Raman spectroscopy to the study of the mixed cationic Pb-Cu and Pb-Cu-Ag minerals: boleite, cumengeite and diaboleite has enabled their molecular structures to be compared. Each of these three minerals shows different hydroxyl-stretching vibrational patterns, but some similarity exists in the Raman spectra of the hydroxyl-deformation modes. The low-wavenumber region is characterized by the bands assigned to the cation-chloride stretching and bending modes. Phosgenite is also a mixed chloride-carbonate mineral and a comparison is made with the molecular structure of the aforementioned minerals. Raman spectroscopy lends itself to the study of these types of minerals in complex mineral systems of secondary mineral formation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdul-Samad, F.A., Humphries, D.A., Thomas, J.H. and Williams, P.A. (1981) Chemical studies on the stabilities of boléite and pseudoboléite Mineralogical Magazine, 44, 101104.CrossRefGoogle Scholar
Bersani, D., Antonioli, G., Lottici, P.P., Fornari, L. Castrichini, M. (2001) Restoration of a Parmigianino's fresco: a micro-Raman investigation of the pictorial surface. Proceedings of SPIE-The International Society for Optical Engineering, 4402, 221226.Google Scholar
Black, L. and Allen, G.C. (1999) Nature of lead patination. British Corrosion Journal, 34, 192197.CrossRefGoogle Scholar
Brooker, M.H., Sunder, S., Taylor, P. and Lopata, V.J. (1983) Infrared and Raman spectra and X-ray diffraction studies of solid lead(II) carbonates. Canadian Journal of Chemistry, 61, 494502.CrossRefGoogle Scholar
Burgio, L., Clark, R.J.H. and Firth, S. (2001) Raman spectroscopy as a means for the identification of plattnerite (Pb〇2), of lead pigments and of their degradation products. Analyst, 126, 222227.CrossRefGoogle Scholar
Burgio, L., Clark, R.J.H. and Gibbs, P.J. (1999) Pigment identification studies in situ of Javanese, Thai, Korean, Chinese and Uighur manuscripts by Raman spectroscopy. Journal of Raman Spectroscopy, 30, 181184.3.0.CO;2-8>CrossRefGoogle Scholar
Burgio, L., Clark, R.J.H., Stratoudaki, T., Doulgeridis, M. and Anglos, D. (2000) Pigment identification in painted artworks: a dual analytical approach employing laser-induced breakdown spectroscopy and Raman microscopy Applied Spectroscopy, 54, 463469.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) Diaboleite, Pb2Cu(OH)4〇2, a defect perovskite structure with stereoactive lone-pair behavior of Pb2+ The Canadian Mineralogist, 33, 11251129.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (2000) Boleite: resolution of the formula, KPb26Ag9Cu24Cl62(〇H)48 The Canadian Mineralogist, 38, 801808.CrossRefGoogle Scholar
Farmer, V.C. (1974) The Infrared Spectra of Minerals. Monograph 4, Mineralogical Society, London, 539 pp.CrossRefGoogle Scholar
Ferraris, E. (1907) Phosgenite and Cinnabar at Monteponi. Rassegna Mineraria, Metallurgica e Chimica, 26, 71.Google Scholar
Gossner, B. (1928) The crystal form of boleite. American Mineralogist , 13, 580582.Google Scholar
Gossner, B. (1930) Boleite, pseudoboleite and cumen- geite Zeitschrift fur Kristallographie, 75, 365367.Google Scholar
Hawthorne, F.C. and Groat, L.A. (1986) The crystal structure and chemical composition of cumengeite Mineralogical Magazine, 50, 157162.CrossRefGoogle Scholar
Humphreys, D.A., Thomas, J.H., Williams, P.A. and Symes, R.F. (1980) The chemical stability of mendipite, diaboleite, chloroxiphite, and cumen- geite, and their relationships to other secondary lead(II) minerals. Mineralogical Magazine , 43, 901904.CrossRefGoogle Scholar
Lacroix, A. (1911) Minerals formed by the action of sea water on metallic objects Comptes rendus de l^Academie de Paris, 151, 276279.Google Scholar
Lacroix, A. and de Schulten, A. (1908) Note on the lead minerals of the Athenian slags of Laurium Bulletin Societe francaise Mineralogie et de Cristallographie, 31, 7990.Google Scholar
Martinetto, P., Anne, M., Dooryhee, E., Drakopoulos, M., Dubus, M., Salomon, J., Simionovici, A. and Walter, P. (2001) Synchrotron X-ray micro-beam studies of ancient Egyptian make-up Nuclear Instruments & Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 181, 744748.CrossRefGoogle Scholar
Mugge, O. (1914) Translation in phosgenite and galena. Neues Jahrbuch fur Mineralogie und Geologische, 4351.Google Scholar
Rouse, R.C. (1973) Crystal structure of boleite. Mineral containing silver atom clusters Journal of Solid State Chemistry, 6, 8692.CrossRefGoogle Scholar
Rulmont, A. (1978) Vibrational properties of lead carbonate-lead chloride, and bromide. Spectrochimica Acta, 34A, 11171125.CrossRefGoogle Scholar
Sillen, L.G. and Petterson, R. (1944) The crystal structure of Pb2Cl2C〇3 (phosgenite) and Pb2Br2C〇3. Naturwissenschaften, 32, 41.Google Scholar
Sillen, L.G. and Pettersson, R. (1946) The crystal structure of Pb2Cl2C〇3 (phosgenite) and Pb2Br2C〇3. Arkiv for Kemi, Mineralogi och Geologi , 21A, 9 pp.Google Scholar
Tsoucaris, G., Martinetto, P., Walter, P. and Leveque, J.L. (2001) Chemistry and cosmetic materials in ancient civilizations Annales Pharmaceutiques Framcaises, 59, 415422.Google Scholar
Walter, P. (1999) Chemistry of ancient Egyptian cosmetics. Actualitei Chimique, 134136.Google Scholar
Walter, P., Martinetto, P., Tsoucaris, G., Breniaux, R., Lefebvre, M.A., Richard, G., Talabot, J. and Dooryhee, E. (1999) Making make-up in ancient Egypt. Nature , 397, 483484.CrossRefGoogle Scholar