Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T16:05:10.367Z Has data issue: false hasContentIssue false

Pseudomorphic transformation of Ca/Mg carbonates into phosphates with focus on dolomite conversion

Published online by Cambridge University Press:  05 July 2018

S. Schultheiss*
Affiliation:
Technische Universität Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
I. Sethmann
Affiliation:
Technische Universität Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
M. Schlosser
Affiliation:
Technische Universität Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
H.-J. Kleebe
Affiliation:
Technische Universität Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, D-64287 Darmstadt, Germany
*

Abstract

Hydrothermal conversion of single crystals of calcite, CaCO3, dolomite, CaMg(CO3)2, and magnesite, MgCO3, was carried out in ammonium phosphate buffer solution. While calcite easily forms a pseudomorph of hydroxylapatite, Ca5(PO4)3OH, it takes several weeks to convert magnesite into pseudomorphic dittmarite, (NH4)Mg(PO4)·H2O. The conversion of dolomite, as the compositional intermediate, also proceeded slowly, but yielded a biphasic pseudomorph composed of whitlockite, Ca9Mg(PO4)6O(PO3OH), and dittmarite. To our knowledge, this is the first description of a biphasic pseudomorph with chemically and structurally different phases. Near the surface, the two phases formed a porous layered structure, while towards the core of the single crystal a fine-grained mixture of both minerals precipitated. The initially sequential pattern of precipitation of Ca-rich whitlockite followed by Mg-rich dittmarite can be explained by dissolved Mg ions being adsorbed onto the dolomite surface or incorporated into hydrated magnesium complexes, retarding crystallization of dittmarite. Surface adsorbed Mg ions impeding further dissolution of dolomite also partly accounts for the observed lower reaction rates of dolomite and magnesite, as compared to calcite. An additional factor decreasing the reaction rates of dolomite and magnesite is a considerable increase in molar volume upon conversion, which restricts the formation of porosity and, hence, ion transport to the reaction front.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (Editors) (2001) Handbook of Mineralogy, Mineralogical Society of America, Chantilly,, VA 20151-1110, USA. http://www.handbookofmineralogy.org/.Google Scholar
Araiza, M.A., Go´mez-Morales, J., Rodríguez Clemente, R. and Castano, V.M. (1999) Conversion of the echinoderm Mellita eduardobarrosoi calcite skeleton into porous hydroxyapatite by treatment with phosphated boiling solutions. Journal of Material Synthesis and Processing, 7, 211219 CrossRefGoogle Scholar
Blum, J.R. (1843) Pseudomorphosen des Mineralreichs. 213 pp. E. Schweizbartsche Verlagshandlung, Stuttgart, Germany.Google Scholar
Calvo, C. and Gopal, R. (1975) The crystal structure of whitlockite from the Palermo quarry. American Mineralogist, 60, 120133 Google Scholar
Chen, Z.F., Darvell, B.W. and Leung, V.W.H. (2004) Hydroxyapatite solubility in simple inorganic solutions. Archives of Oral Biology, 49, 359367 CrossRefGoogle ScholarPubMed
Downs, R.T. (2006) The rruff project: An integrated study of the chemistry, crystallography, Raman and infrared spectroscopy of minerals. Program and abstracts of the 19th general meeting of the international mineralogical association in Kobe, Japan.Google Scholar
Fernández-Díaz, L., Pina, C.M., Astilleros, J.M. and Sánchez-Pastor, N. (2009) The carbonation of gypsum: Pathways and pseudomorph formation. American Mineralogist, 94, 12231234 CrossRefGoogle Scholar
Gareiss, A. (1901) Ueber Pseudomorphosen nach Cordierit. Zeitschrift fü r Kristallographie, Mineralogie und Petrographie, 20, 138 Google Scholar
Geinitz, F.E. (1880) Zur Systemat ik der Pseudomorphosen. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 2, 489498 Google Scholar
Ito, N., Kamitakahara, M. and Ioku, K. (2012) Preparation of spherical granules of octacalcium phosphate for medical application. Functional Materials Letters, 5, 1260009.Google Scholar
Jolliff, B.L., Freeman, J.J. and Wopenka, B. (1996) Structural comparison of lunar, terrestrial, and synthetic whitlockite using laser Raman microprobe sepctroscopy. Lunar and Planetary Science, 27, 613614 Google Scholar
Kasioptas, A., Perdikouri, C., Putnis, C.V. and Putnis, A. (2008) Pseudomorphic replacement of single calcium carbonate crystals by polycrystalline apatite. Mineralogical Magazine, 72, 7780 CrossRefGoogle Scholar
Kasioptas, A., Geisler, T., Putnis, C.V., Perdikouri, C. and Putnis, A. (2010) Crystal growth of apatite by replacement of an aragonite precursor. Journal of Crystal Growth, 312, 24312440 CrossRefGoogle Scholar
Kasioptas, A., Geisler, T., Perdikouri, C., Trepmann, C., Gussone, N. and Putnis, A. (2011) Polycrystalline apatite synthesized by hydrothermal replacement of calcium carbonates. Geochimica et Cosmochimica Acta, 75, 34863500 CrossRefGoogle Scholar
Kerisit, S. and Parker, S.C. (2004) Free energy of adsorption of water and metal ions on the {101¯4} calcite surface. Journal of the American Ceramic Society, 126, 1015210161 Google Scholar
Kilner, R.M. (2006) The evolution of egg colour and patterning in birds. Biological Reviews, 81, 383406 CrossRefGoogle ScholarPubMed
Klement, R. and Steckenreiter, F. (1940) Untersuchungen ü ber isomorphen Ersatz der Elemente in Alkali-Erdalkaliphosphaten. Zeitschrift für anorganische und allgemeine Chemie, 245, 236253 CrossRefGoogle Scholar
Kröhnke, F. (1950) Experimentelle Pseudomorphosen, besonders an organischen Schwermetall- Komplexsalzen. Angewandte Chemie, 62, 222231 CrossRefGoogle Scholar
LeGeros, R.Z. (2008) Calcium phosphate-based osteoinductive materials. Chemical Reviews, 108, 47424753 CrossRefGoogle ScholarPubMed
LeGeros, R.Z., Sakae, T., Bautista, C., Retino, M. and LeGeros, J.P. (1996) Magnesium and carbonate in enamel and synthetic apatites. Advances in Dental Research, 10, 225231 CrossRefGoogle ScholarPubMed
Marchegiani, F., Cibej, E., Vergnis, P., Tosi, G., Fermani, S. and Falini, G. (2009) Hydroxyapatite synthesis from biogenic calcite single crystals into phosphate solutions atambient conditions. Journal of Crystal Growth, 311, 42194225 CrossRefGoogle Scholar
Ozeki, K., Aoki, H. and Masuzawa, T. (2010) Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film. Applied Surface Science, 256, 70277031 CrossRefGoogle Scholar
Plummer, L.N. and Busenberg, E. (1982) The solubilities of calcite, aragonite and vaterite on CO2-H2O solutions between 0 and 90ºC, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochimica et Cosmochimica Acta, 46, 10111040 CrossRefGoogle Scholar
Pokrovsky, O.S. and Schott, J. (2001) Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. American Journal of Science, 301, 597626 CrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: From macroscopic observations to microscopic mechanisms. Mineralogical Magazine, 66, 689708 CrossRefGoogle Scholar
Putnis, A. (2009) Mineral replacement reactions. Reviews in Mineralogy and Geochemistry, 70, 87124 CrossRefGoogle Scholar
Putnis, C.V. and Mezger, K. (2004) A mechanism of mineral replacement: Isotope tracing in the model s ystem KCl-KBr -H2O. Geochimica e t Cosmochimica Acta, 68, 28392848 CrossRefGoogle Scholar
Putnis, C.V., Tsukamoto, K. and Nishimura, Y. (2005) Direct observation of pseudomorphism: Compositional and textural evolution at a fluid-solid interface. American Mineralogist, 90, 19091912 CrossRefGoogle Scholar
Rose, G. (1854) Ueber zwei merkwü rdige Pseudomorphosen von Kalkspath und Eisenglanz. Annalen der Physik, 167, 147154 CrossRefGoogle Scholar
Roy, D.M. and Linnehan, S.K. (1974) Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 247, 220222 CrossRefGoogle ScholarPubMed
Saldi, G.D., Schott, J., Prokrovsky, O.S. and Oelkers, E.H. (2010) An experimental study of magnesite dissolution rates at neutral to alkaline conditions and 150 and 200ºC as a function of pH, total dissolved carbonate concentration, and chemical affinity. Geochimica et Cosmochimica Acta, 74, 63446365 CrossRefGoogle Scholar
Santos, C.F.L., Silva, A.P., Lopes, L., Pires, I. and Correia, I.J. (2012) Design and production of sintered beta-tricalcium phosphate 3D scaffolds for bone tissue regeneration. Materials Science & Engineering C – Materials for Biological Applications, 32, 12931298 CrossRefGoogle Scholar
Sarkar, A.K. (1991) Hydration/dehydration characteristics of struvite and dittmarite pertaining to magnesium ammonium phosphate cement systems. Journal of Material Science, 26, 25142518 CrossRefGoogle Scholar
Sartoris, D.J., Gershuni, D.H., Akeson, W.H., Holmes, R.E. and Resnick, D. (1986) Coralline hydroxyapatite bone graft substitutes: Preliminary report of radiographic evaluation. Radiology, 159, 133137 CrossRefGoogle ScholarPubMed
Schlosser, M., Frö ls, S., Hauf, U., Sethmann, I., Schultheiss, S., Pfeifer, F. and Kleebe, H.-J. (2013) Combined hydrothermal conversion and vapor transport sintering of Ag-modified calcium phosphate scaffolds. Journal of the American Ceramic Society, 96, 412419 CrossRefGoogle Scholar
Shors, E.C. (1999) Coralline bone graft substitutes. Orthopedic Clinics of North America, 30, 599613 CrossRefGoogle ScholarPubMed
Soudée, E. and Péra, J. (2000) Mechanism of setting reaction in magnesia-phosphate cements. Cement and Concrete Research, 30, 315321 CrossRefGoogle Scholar
Suárez-Orduna, R., Rendo´n-Angeles, J.C., Lo´pez- Cuevas, J. and Yanagisawa, K. (2004) The conversion of mineral celestite to strontianite under alkaline hydrothermal conditions. Journal of Physics: Condensed Matter, 16, 13311344 Google Scholar
Urosevic, M., Rodriguez-Navarro, C., Putnis, C.V., Cardell, C., Putnis, A. and Ruiz-Agudo, E. (2012) In situ nanoscale observation of the dissolution of {101¯4} dolomite cleavage surfaces. Geochimica et Cosmochimica Acta, 80, 113 CrossRefGoogle Scholar
Velde, B. (1988) Experimental pseudomorphism of diopside by talc and serpentine in (Ni,Mg)Cl2 aqueous solutions. Geochimica et Cosmochimica Acta, 52, 415424 CrossRefGoogle Scholar
Wang, L., Ruiz-Agudo, E., Putnis, C.V., Menneken, M. and Putnis, A. (2012) Kinetics of calcium phosphate nucleation and growth on calcite: Implications for predicting the fate of dissolved phosphate species in alkaline soils. Environmental Science & Technology, 46, 834842 CrossRefGoogle ScholarPubMed
Wojtowicz, J.A. (2001) Calcium carbonate precipitation potential. Journal of the Swimming Pool and Spa Industry, 2, 2329 Google Scholar
Yoshimura, M., Sujaridworakun, P., Koh, F., Fujiwara, T., Pongkao, D. and Ahniyaz, A. (2004) Hydrothermal conversion of calcite crystals to hydroxyapatite. Materials Science and Engineering C, 24, 521525.CrossRefGoogle Scholar