Published online by Cambridge University Press: 05 July 2018
Hydrothermal conversion of single crystals of calcite, CaCO3, dolomite, CaMg(CO3)2, and magnesite, MgCO3, was carried out in ammonium phosphate buffer solution. While calcite easily forms a pseudomorph of hydroxylapatite, Ca5(PO4)3OH, it takes several weeks to convert magnesite into pseudomorphic dittmarite, (NH4)Mg(PO4)·H2O. The conversion of dolomite, as the compositional intermediate, also proceeded slowly, but yielded a biphasic pseudomorph composed of whitlockite, Ca9Mg(PO4)6O(PO3OH), and dittmarite. To our knowledge, this is the first description of a biphasic pseudomorph with chemically and structurally different phases. Near the surface, the two phases formed a porous layered structure, while towards the core of the single crystal a fine-grained mixture of both minerals precipitated. The initially sequential pattern of precipitation of Ca-rich whitlockite followed by Mg-rich dittmarite can be explained by dissolved Mg ions being adsorbed onto the dolomite surface or incorporated into hydrated magnesium complexes, retarding crystallization of dittmarite. Surface adsorbed Mg ions impeding further dissolution of dolomite also partly accounts for the observed lower reaction rates of dolomite and magnesite, as compared to calcite. An additional factor decreasing the reaction rates of dolomite and magnesite is a considerable increase in molar volume upon conversion, which restricts the formation of porosity and, hence, ion transport to the reaction front.