Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T07:01:16.196Z Has data issue: false hasContentIssue false

Petrogenesis of migmatites in the Huntly-Portsoy area, north-east Scotland

Published online by Cambridge University Press:  05 July 2018

J. R. Ashworth*
Affiliation:
Department of Physics, University of Essex, Wivenhoe Park, Colchester

Summary

Migmatites are described from the Sillimanite-potash-feldspar Zone of the aureole around the Newer Basic suite of synorogenic intrusions. The lowest-grade migmatites are trondhjemitoid (characterized by the assemblage quartz-plagioclase-biotite) or muscovite-granitoid (quartz-plagioclase potash-feldspar-muscovite-sillimanite-biotite). With increasing grade, a transition occurs to cordierite-granitoid assemblages (quartz-plagioclase-potash-feldspar-cordierite-garnet-sillimanite-biotite), which persist to the highest grades observed, where there are also noritoid migmatites (quartz-plagioclase-orthopyroxene-cordierite-biotite). The trondhjemitoids are texturally simple because the minerals did not undergo dehydration reactions. Textural immaturity and consistently cotectic modal compositions indicate that their leucosomes originated as melts. Scatter of plagioclase compositions suggests that the partial melting occurred in small closed systems. The other migmatites have more fusible compositions, so it is deduced that they also underwent partial melting. Retrograde reaction textures are used to infer the sequence of reactions, involving muscovite and biotite, by which melting proceeded during prograde evolution. Whereas the fugacity of water probably varied among spatially associated trondhjemitoid leucosomes, in the muscovite-granitoids it was constrained to an approximately constant value, at given pressure and temperature, by the buffering effect of the mineral assemblage.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Dept. of Geological Sciences, University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET.

References

Ashworth, (J. R.), 1972. Geol. Mag. 109, 45-62.CrossRefGoogle Scholar
Ashworth, (J. R.), 1973. Ibid. 110, 77-80.CrossRefGoogle Scholar
Ashworth, (J. R.), 1975. Ibid. 112, 113-36.CrossRefGoogle Scholar
Brown, (G. C.), 1970. Earth Planet. Sci. Letters, 9, 355-8.CrossRefGoogle Scholar
Brown, (G. C.), and Fyfe, (W. S.), 1970. Contr. Min. Petr. 28, 310-18.CrossRefGoogle Scholar
Chinner, (G. A.), 1966. Quart. Journ. Geol. Soc. 122, 159-86.CrossRefGoogle Scholar
Deer, (W. A.), Howie, (R. A.), and Zussman, (J.), 1963. Rock-forming Minerals, 4. London (Longmans).Google Scholar
Devore, (G. W.), 1956. Journ. Geol. 64, 31-55.CrossRefGoogle Scholar
Evans, (B. W.) and Guidotti, (C. V.), 1966. Contr. Min. Petr. 12, 25-62.CrossRefGoogle Scholar
Flinn, (D.), 1969. Lithos, 3, 361-70.CrossRefGoogle Scholar
Fyee, (W. S.), 1970. In Mechanism of Igneous Intrusion (G. Newall and N. Rast, editors). Liverpool Geological Society.Google Scholar
Grant, (J. A.), 1973. Amer. Journ. Sci. 273, 289-317.CrossRefGoogle Scholar
Gribble, (C. D.), 1968. Contr. Min. Petr. 17, 315-30.CrossRefGoogle Scholar
Gribble, (C. D.), 1970. Scot. Journ. Geol. 6, 75-82.CrossRefGoogle Scholar
Huang, (W. L.) and Wyllie, (P. J.), 1974. Amer. Journ. Sci. 274, 378-95.CrossRefGoogle Scholar
Kalsbeek, (F.), 1970. Medd. Grønland, 189, part I.Google Scholar
Kretz, (R.), 1969. Lithos, 2, 39-66.CrossRefGoogle Scholar
Loberg, (B.), 1963. Geol. För. Förh. 85, 3-109.Google Scholar
Luth, (W. C.), Jahns, (R. H.), and Tuttle, (O. F.), 1964. Journ. Geophys. Res. 69, 759-73.CrossRefGoogle Scholar
Mehnert, (K. R.), 1953. Neues Jahrb. Min., Abh. 85, 59-140.Google Scholar
Mehnert, (K. R.), 1957. Ibid. 90, 39-90.CrossRefGoogle Scholar
Mehnert, (K. R.), 1962. Ibid. 98, 208-49.Google Scholar
Mehnert, (K. R.), 1963. Ibid. 99, 161-99.CrossRefGoogle Scholar
Mehnert, (K. R.), 1968. Migmatites and the Origin of Granitic Rocks. Amsterdam (Elsevier).Google Scholar
Misch, (P.), 1968. Contr. Min. Petr. 17, 1-70.Google Scholar
Panichurst, (R. J.), 1974. Geol. Soe. Amer. Bull. 85, 345-50.2.0.CO;2>CrossRefGoogle Scholar
Read, (H. H.), 1923. The Geology of the Country around Banff, Huntly and Turriff. Memoir of the Geological Survey of Scotland, for sheets 86 and 96.Google Scholar
Read, (H. H.), 1927. Trans. Roy. Soe. Edin. 55, 317-54.CrossRefGoogle Scholar
Read, (H. H.), 1943. Proc. Geol. Assoc. 54, 64-85.CrossRefGoogle Scholar
Read, (H. H.), 1952. Trans. Edin. Geol. Soe. 15, 265-79.CrossRefGoogle Scholar
Thompson, (A. B.), 1974. Contr. Min. Petr. 44, 173-94.CrossRefGoogle Scholar
Turner, (F. J.), 1968. Metamorphic Petrology: Mineralogical and Field Aspects. New York (McGraw-Hill).Google Scholar
Van Der Peas, (L.), and Tobi, (A. C.), 1965. Amer. Journ. Sci. 263, 87-90.Google Scholar
Winkler, (H. G. F.), 1967. Petrogenesis of Metamorphic Rocks, 2nd edn. New York (Springer-Verlag).CrossRefGoogle Scholar
Yoder, (H. S., Jr.), 1967. Carnegie Inst. Washington Yearbook 66, 477-8.Google Scholar
Yoder, (H. S., Jr.), Stewart, (D. B.) and Smith, (J. R.), 1957. Ibid. 56, 206-14.Google Scholar
Zen, (E-AN), 1966. U.S. Geol. Surv. Bull. 1225.Google Scholar