Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:11:16.102Z Has data issue: false hasContentIssue false

Oxo-magnesio-hastingsite, NaCa2(Mg2Fe3+3 )(Al2Si6)O22O2, a new anhydrous amphibole from the Deeti volcanic cone, Gregory rift, northern Tanzania

Published online by Cambridge University Press:  05 July 2018

A. N. Zaitsev*
Affiliation:
Department of Mineralogy, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia Imaging and Analysis Centre, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
E. Yu. Avdontseva
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia
S. N. Britvin
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia
A. Demény
Affiliation:
Institute for Geological and Geochemical Research, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Budaörsi út 45., H-1112, Budapest, Hungary
Z. Homonnay
Affiliation:
Institute of Chemistry, Faculty of Science, Eötvös Loránd University, Pázmány P. s. 1/A, 1117 Budapest, Hungary
T. E. Jeffries
Affiliation:
Imaging and Analysis Centre, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
J. Keller
Affiliation:
Institut für Geowissenschaften Mineralogie-Geochemie, Universität Freiburg, Albertstrasse 23b, D-79104 Freiburg, Germany
V. G. Krivovichev
Affiliation:
Department of Mineralogy, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia
G. Markl
Affiliation:
Fachbereich Geowissenschaften, Universität Tübingen, Wilhelmstrasse 56, D-72074 Tübingen, Germany
N. V. Platonova
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia
O. I. Siidra
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, St. Petersburg, 199034 Russia
J. Spratt
Affiliation:
Imaging and Analysis Centre, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
T. Vennemann
Affiliation:
Institute of Mineralogy and Geochemistry, University of Lausanne, Anthropole, CH-1015, Lausanne, Switzerland
*

Abstract

Oxo-magnesio-hastingsite, ideally NaCa2(Mg2Fe3+3)(Al2Si6)O22O2, is a new anhydrous amphibole from the Deeti volcanic cone in the Gregory rift (northern Tanzania). The mineral occurs as megacrysts up to 12 cm in size in crystal-rich tuff. Oxo-magnesio-hastingsite is brown with a vitreous lustre and has a perfect {110} cleavage. The measured density is 3.19(1) g/cm3. Ferri-kaersutite is biaxial (–), α = 1.706 (2), β = 1.715(2), γ = 1.720(2) (Na light, 589 nm). 2V (calc.) = 73°. Dispersion: r > v, weak; orientation: Y = b; Z ^ c = 8°; pleochroism: strong, Z: dark brown, Y: brown, X: light brown. The average chemical formula of the mineral derived from electron microprobe analyses, Mössbauer spectroscopy and direct water determination is (Na0.67K0.33)Σ1.00(Ca1.87Na0.14Mn0.01)Σ2.02(Mg3.27Fe3+1.25Ti0.44Al0.08)Σ5.04(Al1.80Si6.20O22)(O1.40OH0.60)Σ2.00. It has monoclinic symmetry, space group C2/m and unit-cell parameters a = 9.8837(3), b = 18.0662(6), c = 5.3107(2) Å, b = 105.278(1)o, V = 914.77(5) Å3, Z = 2. The five strongest powder-diffraction lines [d in Å, (I/Io), hkl] are: 3.383 (62) (131), 2.708 (97) (151), 2.555 (100) (), 2.349 (29) () and 2.162 (36) (261). The isotopic composition of H and O, as well as the concentration of trace elements in oxo-magnesio-hastingsite suggest its formation from a melt originated from a mantle source metasomatized by slab-derived fluids.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrinier, P., Mével, C., Bosch, D. and Javoy, M. (1993) Metasomatic hydrous fluids in amphibole peridotites from Zabargad Island (Red Sea). Earth and Planetary Science Letters, 120, 187205 CrossRefGoogle Scholar
Apopei, A.I., Buzgar, N. and Buzatu, A. (2011) Raman and infrared spectroscopy of kaersutite and certain common amphiboles.Analele Universita˘t–ii “Al. I. Cuza” din Ias–i - Seria Geologie (AUI-G), 57(2), 3558 Google Scholar
Aulbach, S., Rudnick, R.L. and McDonough, W.F. (2011) Evolution of the lithospheric mantle beneath the East African Rift in Tanzania and its potential signatures in rift magmas. Geological Society of America Special Papers, 478, 105125 CrossRefGoogle Scholar
Bell, D.R. and Ihinger, P.D. (2000) The isotopic composition of hydrogen in nominally anhydrous mantle minerals. Geochimica et Cosmochimica Acta, 64, 21092118 CrossRefGoogle Scholar
Bell, K. and Keller, J. (Eds) (1995) Carbonatite Volcanism - Oldoinyo Lengai and the Petrogenesis of Natrocarbonatites. IAVCEI Proceedings in Volcanology 4, Springer, Berlin Heidelberg.CrossRefGoogle Scholar
Boettcher, A.L. and O’Neil, J.R. (1980) Stable isotope, chemical, and petrographic studies of high-pressure amphiboles and micas: evidence for metasomatism in the mantle source regions of alkali basalts and kimberlites. American Journal of Science, 280-A, 594621 Google Scholar
Chazot, G., Lowry, D., Menzies, M. and Mattey, D. (1997) Oxygen isotopic composition of hydrous and anhydrous mantle peridotites. Geochimica et Cosmochimica Acta, 61, 161169 CrossRefGoogle Scholar
Church, A.A. (1996) The petrology of the Kerimasi carbonatite volcano and the carbonatites of Oldoinyo Lengai with a review of other occurrences of extrusive carbonatites. PhD thesis, University of London Google Scholar
Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O’Reilly, S.Y. and Powell, W. (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99, 6884 CrossRefGoogle Scholar
Dawson, J.B. (1962) The geology of Oldoinyo Lengai. Bulletin Volcanologique, 24, 348387 CrossRefGoogle Scholar
Dawson, J.B. (1964) Carbonatitic volcanic ashes in Northern Tanganyika. Bulletin Volcanologique, 27, 8191 CrossRefGoogle Scholar
Dawson, J.B. (2008) The Gregory Rift Valley and Neogene-Recent Volcanoes of Northern Tanzania. Memoir of the Geological Society of London, 33.CrossRefGoogle Scholar
Dawson, J.B. and Powell, D.G. (1969) The Natron- Engaruka explosion crater area, Northern Tanzania. Bulletin Volcanologique, 33, 791817 CrossRefGoogle Scholar
Dawson, J.B. and Smith, J.V. (1982) Upper-mantle amphiboles: a review. Mineralogical Magazine, 45, 3546 CrossRefGoogle Scholar
Dawson, J.B. and Smith, J.V. (1988) Metasomatised and veined upper-mantle xenoliths from Pello Hill, Tanzania: evidence for anomalously-light mantle beneath the East African Rift Valley. Contributions to Mineralogy and Petrology, 100, 510527 CrossRefGoogle Scholar
Dawson, J.B., Smith, J.V. and Jones, A.P. (1985) A comparative study of bulk rock and mineral chemistry of olivine melilitites and associated rocks from East and South Africa. Neues Jahrbuch für Mineralogie - Abhandlungen, 152, 143175 Google Scholar
Della Ventura, G., Oberti, R., Hawthorne, F.C. and Bellatreccia, F. (2007) FTIR spectroscopy of Ti-rich pargasites from Lherz and the detection of O2– at the anionic O3 site in amphiboles. American Mineralogist, 92, 16451651 CrossRefGoogle Scholar
Demény, A., Sharp, Z.D. and Pfeifer, H.R. (1997) Mgmetasomatism and formation conditions of Mgchlorite- muscovite-quartzphyllites (leucophyllites) of the Eastern Alps (W. Hungary) and their relations to Alpine whiteschists. Contributions to Mineralogy and Petrology, 128, 247260 Google Scholar
Demény, A., Vennemann, T.W., Homonnay, Z., Milton, A., Embey-Isztin, A. and Nagy, G. (2005) Origin of amphibole megacrysts in the Plio-Pleistocene basalts of the Carpathian–Pannonian Region. Geologica Carpathica, 56, 179189 Google Scholar
Demény, A., Vennemann, T.W., Harangi, Sz., Homonnay, Z. and Fo´ rizs, I. (2006) H2O–dD–FeIII relations of dehydrogenation and dehydration processes in magmat i c amphiboles. Rapid Communications in Mass Spectrometry, 20, 919925 CrossRefGoogle Scholar
Demény, A., Harangi, S., Vennemann, T.W., Casillas, R., Horváth, P., Milton, A.J., Mason, P.R.D. and Ulianov, A. (2012) Amphiboles as indicators of mantle source contamination: combined evaluation of stable H and O isotope compositions and trace element ratios. Lithos, 152, 141156 CrossRefGoogle Scholar
Dyar, M.D., Mackwell, S.J., McGuire, A.V., Cross, L.R. and Robertson, J.D. (1993) Crystal chemistry of Fe3+ and H+ in mantle kaersutite: implications for mantle metasomatism. American Mineralogist, 78, 968979 Google Scholar
Graham, C.M., Harmon, R.S. and Sheppard, S.M.F. (1984) Experimental hydrogen isotope studies: hydrogen exchange between amphibole and water. American Mineralogist, 69, 128138 Google Scholar
Hawthorne, F.C. and Grundy, H.D. (1973) The crystal chemistry of the amphiboles II. Refinement of the crystal structure of oxy-kaersutite. Mineralogical Magazine, 39, 390400 CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Cannillo, E., Sardone, N., Zanetti, A., Grice, J.D. and Ashley, P.M. (1995)A new anhydrous amphibole from the Hoskins mine, Grenfell, New South Wales, Australia: description and crystal structure of ungaretiite , NaNa 2(Mn2 + 2 Mn3 + 3 ) S i 8O2 2O2 . Ameri c a n Mineralogist, 80, 165172 CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L. and Sardonne, N. (1996) Sodium at the A site in clinoamphiboles: the effects of composition on patterns of order. The Canadian Mineralogist, 34, 577593 Google Scholar
Hawthorne, F.C., Cooper, M.A., Grice, J.D. and Ottolini, L. (2000) A new anhydrous amphibole from the Eifel region, Germany: description and crystal structure of obertiite, NaNa2(Mg3Fe3+Ti4+)Si8O22O2 . American Mineralogist, 85, 236241 CrossRefGoogle Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Schumacher, J. and Welch, M.D. (2012) Nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048 CrossRefGoogle Scholar
Hay, R.L. (1983) Natrocarbonatite tephra of Kerimasi volcano, Tanzania. Geology, 11, 599602 2.0.CO;2>CrossRefGoogle Scholar
Hergner, E. and Vennemann, T.W. (1997) Role of fluids in the origin of Tertiary European intraplate volcanism: evidence from O,, H, and Sr isotopes in melilitites. Geology, 25, 10351038 2.3.CO;2>CrossRefGoogle Scholar
Hoefs, J. (2009) Stable Isotope Geochemistry. Sixth Edition. Springer, Berlin, Heidelberg.Google Scholar
Hofmann, A.W. (1988) Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust. Earth and Planetary Science Letters, 90, 297314 CrossRefGoogle Scholar
Johnson, L.H., Jones, A.P., Church, A.A. and Taylor, W.R. (1997) Ultramafic xenoliths and megacrysts from a melilitite tuff cone, Deeti, northern Tanzania. Journal of African Earth Sciences, 25, 2942 CrossRefGoogle Scholar
Kasemann, S., Meixner, A., Rocholl, A., Vennemann, T., Schmitt, A. and Wiedenbeck, M. (2001) Boron and oxygen isotope composition of certified reference materials NIST SRM 610/612, and re ference ma terials JB-2G and JR-2G. Geostandards Newsletter, 25, 405416 CrossRefGoogle Scholar
Keller, J. and Krafft, M. (1990) Effusive natrocarbonatite activity of Oldoinyo Lengai, June 1988. Bulletin of Volcanology, 52, 629645 CrossRefGoogle Scholar
Keller, J. and Zaitsev, A.N. (2012) Geochemistry and petrogenetic significance of natrocarbonatites at Oldoinyo Lengai, Tanzania: composition of lavas from 1988 to 2007. Lithos, 148, 4553 CrossRefGoogle Scholar
Keller, J., Zaitsev, A.N. and Wiedenmann, D. (2006) Primary magmas at Oldoinyo Lengai: the role of olivine melilitites. Lithos, 91, 150172 CrossRefGoogle Scholar
Keller, J., Klaudius, J., Kervyn, M., Ernst, G.G.J. and Mattsson, H.B. (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania. I. New magma composition during the 2007–2008 explosive eruptions. Bulletin of Volcanology, 72, 893912 CrossRefGoogle Scholar
Kyser, T.K. (1986) Stable isotope variations in the mantle. Reviews in Mineralogy and Geochemistry, 16, 141164 Google Scholar
Kyser, T.K. and O’Neil, J.R. (1984) Hydrogen isotope systematics of submarine basalts. Geochimica et Cosmochimica Acta, 48, 21232133 CrossRefGoogle Scholar
Magaritz, M. and Taylor, H.P., Jr. (1976) Oxygen, hydrogen and carbon is otope studies of the Franciscan formation, Coast Ranges, California. Geochimica et Cosmochimica Acta, 40, 215234 CrossRefGoogle Scholar
Mariano, A.N. and Roeder, P.L. (1983) Kerimasi: a neglected carbonatite volcano. The Journal of Geology, 91, 449455 CrossRefGoogle Scholar
Marks, M., Halama, R., Wenzel, T. and Markl, G. (2004) Trace element variations in clinopyroxene and amphibole from alkaline to peralkaline syenites and granites: implications for mineral–melt traceelement partitioning. Chemical Geology, 211, 185215 CrossRefGoogle Scholar
Mattey, D., Lowry, D. and Macpherson, C. (1994) Oxygen isotope composition of mantle peridotite. Earth and Planetary Science Letters, 128, 231241 CrossRefGoogle Scholar
Mattsson, H.B. and Tripoli, B.A. (2011) Depositional characteristics and volcanic landforms in the Lake Natron–Engaruka monogenetic field, northern Tanzania. Journal of Volcanology and Geothermal Research, 203, 2334 CrossRefGoogle Scholar
Nasir, S. and Al-Rawas, A.D. (2006) Mö ssbauer characterization of upper mantle ferrikaersutite. American Mineralogist, 91, 11631169 CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E., Hawthorne, F.C. and Memmi, I. (1995) Temperature-dependent Al order-disorder in the tetrahedral double-chain of C2/m amphiboles. European Journal of Mineralogy, 7, 10491063 CrossRefGoogle Scholar
Oberti, R., Hawthorne, F.C., Cannilo, E. and Cámara, F. (2007) Long-range order in amphiboles. Pp. 125172 in:Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., G., Della Ventura and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and The Geochemical Society, Washington, D.C.Google Scholar
Reguir, E.P., Chakhmouradian, A.R., Nalden, N.M., Yang, P. and Zaitsev, A.N. (2008) Early magmatic and reaction-induced trends in magnetite from the carbonatites of Kerimasi, Tanzania. The Canadian Mineralogist, 46, 879900 CrossRefGoogle Scholar
Rumble, D. and Hoering, T.C. (1994) Analysis of oxygen and sulfur isotope ratios in oxide and sulfide minerals by spot heating with a carbon dioxide laser in a fluorine atmosphrere. Accounts of Chemical Research, 27, 237241 CrossRefGoogle Scholar
Sharp, Z.D., Atudorei, V. and Durakiewicz, T. (2001) A rapid method for determination of hydrogen and oxygen isotope ratios from water and hydrous minerals. Chemical Geology, 178, 197210 CrossRefGoogle Scholar
Shaw, A.M., Hauri, E.H., Fischer, T.P., Hilton, D.R. and Kelley, K.A. (2008) Hydrogen isotopes in Mariana arc melt inclusions: implications for subduction dehydration and the deep Earth water cycle. Earth and Planetary Science Letters, 275, 138145 CrossRefGoogle Scholar
Suzuoki, T. and Epstein, S. (1976) Hydrogen isotope fractionation between OH-bearing minerals and water. Geochimica et Cosmochimica Acta, 40, 12291240 CrossRefGoogle Scholar
Tait, K.T., Hawthorne, F.C., Grice, J.D., Ottolini, L. and Naya k , V . K . (2005 ) Dellaventuraite , NaNa2(MgMn2TiLi)Si8O22O2, a new anhydrous amphibole from the Kajlidongri Manganese Mine, Jhabua District, Madhya Pradesh, India. American Mineralogist, 90, 304309 CrossRefGoogle Scholar
Tiepolo, M., Zannetti, A. and Oberti, R. (1999) Detection, crystal-chemical mechanisms and petrological implications of [6]Ti4+ partitioning in pargasite and kaersutite. European Journal of Mineralogy, 11, 345354 CrossRefGoogle Scholar
Tilley, C.E. and and Yoder, H.S., Jr. (1968) The pyroxenite facies conversion of volcanic and subvolcanic, melilite-bearing and other alkali ultramafic assemblages. Carnegie Institution of Washington, Annual Report of the Director of the Geophysical Laboratory, 1966–67 457460 Google Scholar
Valley, J.W., Kitchen, N., Kohn, M.J., Niendorf, C.R. and Spicizza, M.J. (1995) UWG-2, a garnet standard for oxygen isotope ratios: Strategies for high precision and accuracy with laser heating. Geochimca et Cosmochimica Acta, 59, 55235531 CrossRefGoogle Scholar
Vennemann, T.W. and O’Neil, J.R. (1993) A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc reagent. Chemical Geology, 103, 227234 CrossRefGoogle Scholar
Wakefield, T.K.J. Jr., (1870) Routes of native caravans from the coast to the interior of Eastern Africa, chiefly from information given by Sádi Bin Ahédi, a native of a district near Gázi, in Udigo, a little north of Zanzibar. Journal of the Royal Geographical Society of London, 40, 303339 CrossRefGoogle Scholar
Wiedenmann, D., Keller, J. and Zaitsev, A.N. (2010) Melilite-group minerals at Oldoinyo Lengai, Tanzania. Lithos, 118, 112118 CrossRefGoogle Scholar
Williams, P.A., Hatert, F., Pasero, M. and Mills, S. J. (2011) New minerals and nomenclature modifications approved in 2011. Mineralogical Magazine, 75, 25492561 CrossRefGoogle Scholar
Zaitsev, A.N. (2010) Nyerereite from calcite carbonatite of Kerimasi volcano, northern Tanzania. Geology of Ore Deposits, 52(7), 630640 CrossRefGoogle Scholar
Zaitsev, A.N., Williams, C.T., Britvin, S.N., Kuznetsova, I.V., Spratt, J., Petrov, S.V. and Keller, J. (2010) Kerimasite, Ca3Zr2(Fe3+ 2 Si)O12, a new garnet from carbonatites of Kerimasi volcano and surrounding explosion craters, northern Tanzania. Mineralogical Magazine, 74, 841858 CrossRefGoogle Scholar
Zaitsev, A.N., Chakhmouradian, A.R., Siidra, O.I., Spratt, J., Williams, C.T., Stanley, C.J., Petrov, S.V., Britvin, S.N. and Polyakova, E.A. (2011) Fluorine-, yttrium- and lanthanide-rich cerianite- (Ce) from carbonatitic rocks of the Kerimasi volcano and surrounding explosion craters, Gregory Rift, northern Tanzania. Mineralogical Magazine, 75, 28132822 CrossRefGoogle Scholar
Zheng, Y.F. (1993) Calculation of oxygen isotope fractionation in hydroxil-bearing silicates. Earth and Planetary Science Letters, 120, 247263 CrossRefGoogle Scholar
Supplementary material: File

Zaitsev et al. supplementary material

Supplementary analytical data

Download Zaitsev et al. supplementary material(File)
File 119.3 KB