Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-06T10:37:22.797Z Has data issue: false hasContentIssue false

On the reported presence of potassium in clinopyroxene from potassium-rich lavas: a transmission electron microscope study

Published online by Cambridge University Press:  05 July 2018

M. Mellini
Affiliation:
Dipartimento di Scienze della Terra, Università di Perugia, 06100 Perugia, Italy
A. Cundari
Affiliation:
Department of Geology, University of Melbourne, Parkville 3052, Australia

Abstract

Titanian aegirine in a pegmatoid differentiate from leucitite sensu stricto (i.e. without modal plagioclase) was found to contain significant K (up to 0.07K atoms per formula unit; 0.11 wt.% K2O) by electron probe microanalysis. A transmission electron microscope study showed that this pyroxene contained a lamellar amorphous phase and other more irregular, amorphous domains where K and Al are concentrated. The microstructures suggest that the aegirine-amorphous phase system did not achieve textural equilibrium. Also, the chemistry of this phase is variable, particularly in Ca and Mg, suggesting lack of chemical equilibrium within the liquid from which the phase derived. The average composition of the latter approaches that of the coexisting K-richterite and is interpreted as trapped residual liquid, i.e. glass, from pyroxene crystallization which failed to develop a crystalline amphibole. In view of the extensive stability of richterite coexisting with pyroxene to high pressure, the reported occurrence of ‘K-bearing pyroxene’ may not be considered as a homogeneous K-bearing phase and a predictable potassium carrier in the petrogenesis of K-rich rocks like leucitites and lamproites.

Type
Silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akai, J. (1982) Contrib. Mineral. Petrol. 80, 117-31.CrossRefGoogle Scholar
Birch, W. D. (1978) J. Geol. Soc. Austr. 25, 369-85.CrossRefGoogle Scholar
Buseck, P. R., and Veblen, D. R. (1978) Geochim. Cosmochim. Acta 42, 669-78.CrossRefGoogle Scholar
Cundari, A. (1973) J. Geol. Soc. Austr. 20, 465-92.CrossRefGoogle Scholar
Erlank, A. J., and Kushiro, I. (1970) Carnegie Inst. Washington Yb. 68, 233-6.Google Scholar
Ferguson, A. K. (1978) Contrib. Mineral. Petrol. 67, 11-5.CrossRefGoogle Scholar
Griffin, W. L., and Murthy, V. R. (1969) Geochim. Cosmochim. A cta 33, 1389-414.CrossRefGoogle Scholar
Griffin, W. L., and Murthy, V. R., Mellini, M., Oberti, R., and Rossi, G. (1985) Contrib. Mineral. Petrol. 91, 330-9.CrossRefGoogle Scholar
Harlow, G. E., and Dowty, E. (1982) Geol. Soc. Am. Ann. Meeting (New Orleans) Abs. 14,507.Google Scholar
Haslam, H. W. (1983) Mineral. Mag. 47, 238-40.CrossRefGoogle Scholar
Jaques, A. L. (1987) Terra Cognita 7, 612.Google Scholar
Kushiro, I., and Erlank, A. J. (1970) Carnegie Inst. Washington Yb. 68, 231-3.Google Scholar
Leake, B. E. (1978) Mineral. Mag. 42, 533-63.CrossRefGoogle Scholar
Mellini, M., and Menichini, R. (1985) Rend. Soc. It. Mineral. Petrol. 40, 261-6.Google Scholar
Papike, J. J. (1980) Reviews in Mineralogy, 7, 495-525, Mineral. Soc. Amer.Google Scholar
Shimizu, N. (1971) Earth Planet. Sci. Lett. 11, 374-80.CrossRefGoogle Scholar
Vaughan, P. J., and Kohlstedt, D. L. (1982) Contrib. Mineral. Petrol. 81, 253-61.CrossRefGoogle Scholar
Veblen, D. R., and Buseck, P. R. (1981) Am. Mineral. 66, 1107-34.Google Scholar