Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T05:34:09.538Z Has data issue: false hasContentIssue false

Ognitite, NiBiTe, a new mineral species, and Co-rich maucherite from the Ognit ultramafic complex, Eastern Sayans, Russia

Published online by Cambridge University Press:  08 May 2019

Andrei Y. Barkov*
Affiliation:
Research Laboratory of Industrial and Ore Mineralogy, Cherepovets State University, 5 Lunacharsky Avenue, 162600 Cherepovets, Russia
Luca Bindi
Affiliation:
Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira 4, I-50121 – Firenze, Italy
Nobumichi Tamura
Affiliation:
Advanced Light Source, 1 Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229, USA
Gennadiy I. Shvedov
Affiliation:
Institute of Mining, Geology and Geotechnology, Siberian Federal University, 95 Avenue Prospekt im. gazety “Krasnoyarskiy Rabochiy”, 660025 Krasnoyarsk, Russia
Björn Winkler
Affiliation:
Inst. f. Geowissenschaften, Universität Frankfurt, Altenhöferallee 1, DE-60438 Frankfurt a. M., Germany
Camelia V. Stan
Affiliation:
Advanced Light Source, 1 Cyclotron Road, Lawrence Berkeley National Laboratory, Berkeley, CA 94720-8229, USA
Wolfgang Morgenroth
Affiliation:
Inst. f. Geowissenschaften, Universität Frankfurt, Altenhöferallee 1, DE-60438 Frankfurt a. M., Germany
Robert F. Martin
Affiliation:
Department of Earth and Planetary Sciences, McGill University, 3450 University Street, Montreal, Quebec H3A 0E8, Canada
Federica Zaccarini
Affiliation:
University of Leoben, Department of Applied Geosciences and Geophysics, Peter Tunner Strasse 5, A-8700 Leoben, Austria
Christopher J. Stanley
Affiliation:
Economic and Environmental Earth Sciences Division, The Natural History Museum, Cromwell Road, London SW7 5BD, United Kingdom
*
*Author for correspondence: Andrei Y. Barkov, Email: [email protected]

Abstract

We describe the new species ognitite, NiBiTe, and a Co-rich variety of maucherite, hitherto unreported; both were discovered in the Ognit ultramafic complex of Neoproterozoic age in Eastern Sayans, Russia. The mean composition of ognitite (n = 7) is: Ni 17.05, Fe 0.07, Cu 0.14, Pd 0.14, Te 32.53, Bi 49.64, total 99.57 wt.%, corresponding to: (Ni1.11Cu0.008Fe0.005Pd0.005)Σ1.13Bi0.90Te0.97 (Σ atoms = 3 apfu). Ognitite is trigonal, space group P3m1 [R1 = 0.0276 for 81 reflections with Fo > 4σ(Fo)]. The unit-cell parameters derived from the single-crystal X-ray diffraction data are: a = 3.928(1) Å, c = 5.385(1) Å and V = 71.95(4) Å3, with Z = 1. The c:a ratio is 1.37. The powder X-ray diffraction data obtained on the same fragment used for the single-crystal study are: a = 3.9332(4) Å, c = 5.3920(6) Å and V = 72.24(1) Å3. Ognitite exhibits the brucite-type structure with edge-sharing NiTe3Bi3 octahedra forming sheets parallel to (0001). It is related to melonite, but is distinct compositionally by the extreme Bi-enrichment (melonite and its synthetic analogue contain <0.4 Bi apfu), and structurally as Bi and Te are ordered at two distinct sites, leading to the loss of the centre of symmetry in ognitite.

At more than 9 wt.% Co, or ~2 apfu Co, the core of Co-rich maucherite [(Ni,Co)11As8] in a zoned crystal, which is surrounded by Co-depleted orcelite, far surpasses the norm (≤1 and up to 3.9 wt.% Co). The unit-cell parameters of the Co-rich maucherite are: a = 6.85(2) and c = 21.83(5) Å, which are based on results of synchrotron micro-Laue diffraction.

The host rock consists of serpentine, clinochlore (Mg# 95–97) and skeletal chromite. We favour the metastable crystallisation of fluid-saturated globules of a sulfide–arsenide melt to explain the anomalous compositions of ore minerals at Ognit. These anomalies seem consistent with rapid cooling in a fluid-enriched system, possibly related to late-stage degassing of the magma, as reflected in a prominent metasomatic aureole at the contact with the enclosing gneissic rocks.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Irina O Galuskina

References

Barkov, A.Y., Thibault, Y., Laajoki, K.V.O, Melezhik, V.A. and Nilsson, L.P. (1999) Zoning and substitutions in Co–Ni–(Fe)–PGE sulfarsenides from the Mount General'skaya layered intrusion, Arctic Russia. The Canadian Mineralogist, 37, 127142.Google Scholar
Barkov, A.Y., Nikiforov, A.A., Halkoaho, T.A.A. and Konnunaho, J.P. (2016) The origin of spheroidal patterns of weathering in the Pados-Tundra mafic-ultramafic complex, Kola Peninsula, Russia. Bulletin of the Geological Society of Finland, 88, 105113.Google Scholar
Barkov, A.Y., Shvedov, G.I., Flemming, R.L., Vymazalová, A. and Martin, R.F. (2017 a) Melonite from Kingash and Kuskanak, Eastern Sayans, Russia, and the extent of Bi-for-Te substitution in melonite and synthetic Ni(Te,Bi)2–x. Mineralogical Magazine, 81, 695705.Google Scholar
Barkov, A.Y., Nikiforov, A.A. and Martin, R.F. (2017 b) The structure and cryptic layering of the Pados-Tundra ultramafic complex, Serpentinite belt, Kola Peninsula, Russia. Bulletin of the Geological Society of Finland, 89, 3556.Google Scholar
Barkov, A.Y., Bindi, L., Winkler, B., Morgenroth, W., Shvedov, G.I., Martin, R.F., Zaccarini, F., Stan, C.V., Tamura, N. and Stanley, C.J. (2019) Ognitite, IMA 2018-006a. CNMNC Newsletter No. 47, February 2019, page 146; Mineralogical Magazine, 83, 143147.Google Scholar
Barnes, S.J. and Roeder, P. (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 22792302.Google Scholar
Bindi, L., Tredoux, M., Zaccarini, F., Miller, D.E. and Garuti, G. (2014) Non stoichiometric nickel arsenides in nature: the structure of orcelite, Ni5–xAs2 (x = 0.25), from the Bon Accord oxide body, South Africa. Journal of Alloys and Compounds, 601, 175178.Google Scholar
Cabri, L.J. and Laflamme, J.H.G. (1976) The mineralogy of the platinum-group elements from some copper-nickel deposits of the Sudbury area, Ontario. Economic Geology, 71, 11591195.Google Scholar
Ernst, R.E., Hamilton, M.A. and Soderlung, U. (2012) A proposed 725 Ma Dovyren–Kingash LIP of southern Siberia, and possible reconstruction link with 725–715 Ma Franklin LIP of North Laurentia. Abstract Volume, 35, GAC-MAC Joint Annual Meeting “Geoscience at the Edge” (May 27–29, 2012, St. Johns, Newfoundland and Labrador, Canada).Google Scholar
Fleet, M.E. (1973 a) The crystal structure of maucherite (Ni11As8). American Mineralogist, 58, 203210.Google Scholar
Fleet, M.E. (1973 b) The crystal structure of parkerite (Ni3Bi2S2). American Mineralogist, 58, 435439.Google Scholar
Fleet, M.E., Chryssoulis, S.L., Stone, E.S. and Weisener, C.G. (1993) Partitioning of platinum-group elements and Au in the Fe–Ni–Cu–S system: Experiments on the fractional crystallization of sulfide melt. Contributions to Mineralogy and Petrology, 115, 3644.Google Scholar
Garuti, G. and Rinaldi, R. (1986) Mineralogy of melonite-group and other tellurides from the Ivrea–Verbano basic complex, western Italian Alps. Economic Geology, 81, 12131217.Google Scholar
Gervilla, F., Makovicky, E., Makovicky, M. and Rose-Hansen, J. (1994) The system Pd–Ni–As at 790° and 450°C. Economic Geology, 89, 16301639.Google Scholar
Gervilla, F., Cabri, L.J., Kojonen, K., Sie, S.H., Papunen, H. and Hach-Alí, F.P. (2000) Trace platinum group elements in arsenides and sulfarsenides from magmatic ores: An electron microprobe and proton microprobe (micro-PIXE technique) study. Cadernos Lab. Xeoloxico de Laxe Coruna, 25, 103105.Google Scholar
Gladkochub, D.P., Wingate, M.T.D., Pisarevsky, S.A., Donskaya, T.V., Mazukabzov, A.M., Ponomarchuk, V.A. and Stanevich, A.M. (2006) Mafic intrusions in southwestern Siberia and implications for a Neoproterozoic connection with Laurentia. Precambrian Research, 147, 260278.Google Scholar
Gritsenko, Yu.D. and Spiridonov, E.M. (2008) Maucherite from metamorphic-hydrothermal assemblages of the Noril'sk ore field. Geology of Ore Deposits, 50, 590598.Google Scholar
Häkli, T.A., Vuorelainen, Y. and Sahama, T.G. (1965) Kitkaite (NiTeSe), a new mineral from Kuusamo, northeast Finland. American Mineralogist, 50, 581586.Google Scholar
Hattori, K., Takahashi, Y., Guillot, S. and Bo, Johanson (2005) Occurrence of arsenic (V) in forearc mantle serpentinites based on X-ray absorption spectroscopy study. Geochimica et Cosmochimica Acta, 69, 55855596.Google Scholar
Ishida, K. and Nishlzawa, T. (1990) The As–Co (arsenic–cobalt) system. Bulletin of Alloy Phase Diagrams, 11, 550554.Google Scholar
Makovicky, M., Makovicky, E., and Rose-Hansen, J. (1992) The phase system Fe–Pt–As–S at 850°C and 470°C. Neues Jahrbuch für Mineralogie, 10, 441453.Google Scholar
Makovicky, E. and Merlino, S. (2009) OD (order–disorder) character of the crystal structure of maucherite Ni8As11. European Journal of Mineralogy, 21, 855862.Google Scholar
Mekhonoshin, A.S., Tolstykh, N.D., Podlipsky, M.Yu., Kolotilina, T.B., Vishnevsky, A.V. and Benedyuk, Yu.P. (2013) PGE mineralization of dunite–wehrlite massifs at the Gutara-Uda interfluve, Eastern Sayan. Geology of Ore Deposits 55, 162175.Google Scholar
Mekhonoshin, A.S., Kolotilina, T.B. and Doroshkov, A.A. (2018) Geochemical model for the formation of the Medek platinum-bearing dunite-wehrlite intrusion (East Sayan, Russia). Russian Geology and Geophysics, 59, 16031615.Google Scholar
Oxford Diffraction (2006) CrysAlis RED (Version 1.171.31.2) and ABSPACK in CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.Google Scholar
Özkurt, B. (2012) Effects of Ni substitution in Bi-2212 superconductors. Journal of Superconductivity and Novel Magnetism, 25, 17751779.Google Scholar
Peacock, M.A. and Thompson, R.M. (1946) On melonite from Quebec and the crystal structure of NiTe2. American Mineralogist, 31, 204.Google Scholar
Petruk, W., Harris, D.C. and Stewart, J.M. (1971) Characteristics of the arsenides, sulpharsenides and antimonides. The Canadian Mineralogist, 11, 150186.Google Scholar
Piña, R., Gervilla, F., Barnes, S.-J. and Lunar O.R. (2014) Liquid immiscibility between arsenide and sulfide melts: evidence from a LA–ICP–MS study in magmatic deposits at Serranía de Ronda (Spain). Mineralium Deposita, 50, 265279.Google Scholar
Prichard, H.M., Fisher, P.C., McDonald, I., Knight, R.D., Sharp, D.R. and Williams, J.P. (2013) The distribution of PGE and the role of arsenic as a collector of PGE in the Spotted Quoll nickel ore deposit in the Forrestania Greenstone Belt, Western Australia. Economic Geology, 108, 19031921.Google Scholar
Raič, S., Mogessie, A., Benkó, Z., Molnár, F., Hauck, S. and Severson, M. (2015) Arsenic-rich Cu-Ni-PGE mineralization in Wetlegs, Duluth complex, St. Louis county, Minnesota, USA. The Canadian Mineralogist, 53, 105132.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.Google Scholar
Shvedov, G.I. and Barkov, A.Y. (2017) Primary and alteration assemblages of platinum-group minerals from the Ognit complex, Irkutskaya oblast, Eastern Sayans, Russia. Neues Jahrbuch für Mineralogie Abhandlungen: Journal of Mineralogy and Geochemistry, 194, 3548.Google Scholar
Singleton, M. and Nash, P. (1987) The As–Ni (arsenic–nickel) system. Journal of Phase Equilibria, 8, 419422.Google Scholar
Tamura, N. (2014) XMAS: A Versatile Tool for Analyzing Synchrotron X-ray Microdiffraction Data. Pp. 125155 in: Strain and Dislocation Gradients from Diffraction (Barabash, R. and Ice, G., editor). Imperial College Press, London, UK.Google Scholar
Tolstykh, N.D., Polyakova, G.V., Izokh, A.E., Podlipsky, M.Yu., Mekhonoshin, A.S., Orsoev, D.A. and Kolotilina, T.B. (2014) Cu–Ni–PGE deposits of east Siberia hosted by Neoproterozoic mafic-ultramafic complexes. Pp. 138–140 in: Abstract Volume 2014 Convention 11th International Conference on Gondwana to Asia 20–21 September, Beijing, China IAGR Conference Series No. 20.Google Scholar
Wagner, T. and Lorenz, J. (2002) Mineralogy of complex Co–Ni–Bi vein mineralization, Bieber deposit, Spessart, Germany. Mineralogical Magazine, 66, 385407.Google Scholar
Wilson, A.J.C., Ed. (1992) International Tables for Crystallography, Volume C: Mathematical, Physical and Chemical Tables. Kluwer Academic, Dordrecht, NL.Google Scholar
Yilmaz, F., Kilicaslan, M.F., Atanur, O.M., Hong, S.-J. and Uzun, O. (2012) Effects of substitution of Al and Bi for Ni on structure and hydrogen storage properties of LaNi4.7–xAl0.3Bix (x = 0.1, 0.2, 0.3) alloy. Japanese Journal of Applied Physics, 51, 09MB01.Google Scholar
Yund, R.A. (1961) Phase relations in the system Ni–As. Economic Geology, 56, 12731296.Google Scholar
Supplementary material: File

Barkov et al. supplementary material

Barkov et al. supplementary material

Download Barkov et al. supplementary material(File)
File 5.7 KB