Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T12:15:07.191Z Has data issue: false hasContentIssue false

A numerical approach for the formation of chlorite and sulphide-bearing greisen: a study based on the Navalcubilla system (Spanish Central System)

Published online by Cambridge University Press:  05 July 2018

Fernando Tornos*
Affiliation:
Instituto Tecnológico GeoMinero de España, c/Rios Rosas, 23 28003 Madrid, Spain

Abstract

The formation of sulphide and cassiterite-bearing chlorite-rich greisens in the Navalcubilla granite has been modelled theoretically. Numerical simulation on the reaction of a hydrothermal fluid with a granitic rock predicts assemblages very similar to those found in nature, with progressive formation of muscovite, quartz, chlorite, microcline and plagioclase zones. The hydrothermal alteration of the rock produces a neutralization of the inflowing acid fluid, a drop in the fS2 and, to a lesser degree, an increment in fO2. During hydrothermal alteration, fS2 and fO2 change abruptly between metasomatic zones, but chlorite seems to control their major changes. Scheelite and cassiterite are concentrated in the internal zones, while sulphides are related to the more external zones. Fluid-rock reactions seem to be very effective for precipitating cassiterite and scheelite, even from very Sn and W-poor fluids. Appreciable amounts of sulphides are only expected in systems with high concentrations of base metals. Boiling and simple cooling of the fluids acidifies and oxidizes them but chemical changes are not strong enough to induce significant precipitation of ore minerals, at least when the temperature changes are small. Continued circulation of fluids along fractures with previously precipitated quartz + wolframite produces replacement of wolframite by scheelite and sulphides.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, H.L. (1979) Solubilities of ore minerals. In Geochemistry of Hydrothermal Ore Deposits (Barnes, H.L., ed.), Wiley, 404-60.Google Scholar
Barton, P.B., Bethke, P.M. and Roedder, E. (1977) Environment of ore deposition in the Creede mining district, San Juan Mountains, Colorado: Part III. Progress toward interpretation of the chemistry of the ore-forming fluid for the OH vein. Econ. Geol., 72, 124.CrossRefGoogle Scholar
Botrell, S.H. and Yardley, B.W.D. (1988) The composition of a primary granite-derived ore fluids from SW England, determined by fluid inclusion analysis. Geochim. Cosmochim. Acta, 52, 585—8.CrossRefGoogle Scholar
Burt, D.M. (1981) Acidity-salinity diagrams. Application to greisen and porphyry deposits. Econ. Geol., 76, 832-4.CrossRefGoogle Scholar
Caballero, J.M. (1993) Las episienitas de la Sierra de Guadarrama: un caso singular de alteración hidro-termal de edad posthercínica. Thesis. Universidad Complutense de Madrid, 313 pp.Google Scholar
Caballero, J.M., Casquet, C., Galindo, C., Gonzalez-Casado, J.M., Snelling, N. and Tornos, F. (1992) Dating of hydrothermal events in the Sierra del Guadarrama, Iberian Hercynian Belt. Spain. Geogaceta, 11, 1—4.Google Scholar
Casquet, C., Fuster, J.M., Gonzalez Casado, J.M., Peinado, M. and Villaseca, C. (1988) Extensional tectonics and granite emplacement in the Spanish Central System. A discussion. In Proceedings. Fifth EGT Workshop, The Iberian Peninsula, 65—76.Google Scholar
Charoy, B. (1981) Post magmatic processes in SW England and Brittany. Usher Society Proceedings, 5, 101-15.Google Scholar
Drummond, S.E. and Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydro-thermal systems. Econ. Geol., 80, 126—47.CrossRefGoogle Scholar
Eugster, H.P. (1985) Granites and hydrotherrnal ore deposits: a geochemical framework. Mineral. Mag., 49, 723.CrossRefGoogle Scholar
Gonzáilez Casado, J.M., Caballero, J.M., Casquet, C., Galindo, C. and Tornos, F. (1996) Paleostress field and geotectonic interpretation of the Alpine Cycle onset in the Sierra del Guadarrama (eastern Iberian Central System), based on evidence from episye-nites. Tectonophysics (in press.)CrossRefGoogle Scholar
Heinrich, C.A. (1990) The chemistry of hydrothermal tin (tungsten) ore deposition. Econ. Geol. 85, 457-81.CrossRefGoogle Scholar
Heinrich, C.A. and Eadington, P.J. (1986) Thermodynamic predictions of the hydrothermal chemistry of As, and their significance for the paragenetic sequence of some arsenopyrite cassiter-ite base metal sulfide deposits. Econ. Geol., 81, 511-29.CrossRefGoogle Scholar
Heinrich, C.A., Ryan, C.G., Mernagh, T.P. and Eadington, P.J. (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ. Geol, 87, 1566-8.CrossRefGoogle Scholar
Heinrich, C.A., Walshe, J.L. and Harrold, B.P. (1995) Chemical mass transfer modeling and predictive mineral exploration. Ore Geology Reviews, 10, 319-3.CrossRefGoogle Scholar
Helgeson, H.C., Delany, J.M., Nesbitt, H.W. and Bird, D.K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals. Amer. J, Sci., 278-A, 229 pp.Google Scholar
Helgeson, H.C., Kirkham, D.H. and Flowers, G.C. (1981) Theoretical prediction pf the thermodynamic behaviour of aqueous electrolytes at high pressures and temperatures. IV: Calculation of activity coefficients, osmotic coefficients and apparent molal properties to 5 kb and 600°. Amer. J. Sci, 281, 1241-5.CrossRefGoogle Scholar
Henley, R.W. and Hedenquist, J.W. (1986) Introduction to the geochemistry of active and fossil geothermal systems. In Guide to the Active Epithermal (Geothermal) Systems and Precious Metal Deposits of New Zealand (Henley, R.W., Hedenquist, J.W. and Roberts, P.J., eds) Monograph Series on Mineral Deposits, 26, 122.Google Scholar
Henley, R.W., Truesdell, A.H. and Barton, P.B. (1984) Fluid mineral equilibria in hydrothermal systems. Reviews Economic Geology, 1, 265 pp.Google Scholar
Jackson, K.J. and Helgeson, H.C. (1985) Chemical and thermodynamic constraints on the hydrothermal transport and deposition of tin I: Calculation of the solubility of cassiterite at high P and T. Geochim. Cosmochim. Acta, 49, 122.CrossRefGoogle Scholar
Jackson, N.J., Willis-Richards, J., Manning, D.A. and Sams, M.S. (1989). Evolution of the Cornubian ore field, SW England: Part II.-Mineral deposits and ore forming processes. Econ. Geol., 84, 1101—33.CrossRefGoogle Scholar
Kelly, W.C. and Rye, R.O. (1979). Geologic, fluid inclusion and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Econ. Geol., 74, 1721-819.CrossRefGoogle Scholar
Korzhinskii, D.S. (1970). Theory of Metasomatic Zoning. Oxford Clarendon Press, New York, 162 pp.Google Scholar
Leduc, L. (1978). Le distric de Ponferrada (León, NW de Espagne) et ses gisements de tungstene. Thesis. Univ. Paris VI, 2 volumes.Google Scholar
Lentz, D.R., Lutes, G. and Hartree, R. (1988) Bi-Sn-Mo-W greisen mineralization associated with the True Hill granite, SW New Brunswick. Maritime Sediments and Atlantic Geology, 24, 321-38.Google Scholar
Mangas, J. (1987) Estudio de las inclusiones fluidas en los yacimientos españoles de estaño ligados a granitos hercínicos. Thesis. Universidad de Salamanca, 595 pp.Google Scholar
Nesen, H. (1980). Le modele exogranite-endogranite a stockscheider et la metallogenese Sn-W. Etude des gisements de Fontao et Santa Comba (Galice, Espagne). Thesis. Univ.Paris.Google Scholar
Noronha, F., Doria, A., Dubessy, J. and Charoy, B. (1992) Characterization and timing of the different types of fluids present in the barren and ore veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita, 27, 7280.CrossRefGoogle Scholar
Norton, D. and Knight, J. (1977) Transport phenomena in hydrothermal systems: cooling plutons. Am. J. Sci., 277, 937-81CrossRefGoogle Scholar
Oelkers, E.H. and Helgeson, H.C. (1991) Calculation of activity coefficients and degrees of formation of neutral ion pairs in supercritical electrolyte solutions. Geochim. Cosmochim. Acta, 55, 1235—51.CrossRefGoogle Scholar
Ohmoto, H. (1972) Systematics of sulfur and carbon isotopes in hydrothermal ore deposits. Econ. Geol., 67, 551-78.CrossRefGoogle Scholar
Pabalan, R.T. (1986) Solubility of cassiterite (SnO2) in NaC1 solutions from 200-350° with geologic applications. Ph.D. Thesis, Pennsylvania State Univ., 140 pp.Google Scholar
Patterson, D.J., Ohmoto, H. and Solomon, M. (1981) Geological setting and genesis of cassiterite-sulfide mineralization at Renison Bell, Western Tasmania. Econ. Geol., 76, 393438.CrossRefGoogle Scholar
Pitcher, W.S. (1982) Granite type and tectonic environment. In Mountain Building Processes (Hsu, L., ed.), Academic Press, 1940.Google Scholar
Pollard, P.J. (1983) Magmatic and postmagmatic processes in the formation of rocks associated with REE elements deposits. Trans. Institution Mining and Metallurgy, 92, bl-b9Google Scholar
Polya, D.A. (1989) Chemistry of the main stage ore forming fluids of the Panasqueira W-Cu(Ag)-Sn deposit, Portugal: Implications for models of ore genesis. Econ. Geol., 84, 1134-52.CrossRefGoogle Scholar
Rankin, A.H. and Alderton, D.H.M. (1985) Fluids from granites from SW England. In High Heat Production Granites, Hydrothermal Circulation and Ore Genesis, Institution of Mining and Metallurgy, London, 287-99.Google Scholar
Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling and oxidation in epithermal systems: A numerical model approach. Reviews Economic Geology, 2, 249-71.Google Scholar
Reed, M.H. and Spycher, N.F. (1988). Chemical modeling of boiling, condensation, fluid-fluid mix-ing and water rock reaction using programs CHILLER and SOLVEQ. Abstracts American Chemical Society Symposium, Chemical Modeling Aqueous systems, 25—30.Google Scholar
Scherba, G.N. (1967) Greisens. International Geological Review, 12, 114-50.and 239-55.CrossRefGoogle Scholar
Serrano Pinto, M., Casquet, C., Ibarrola, E., Corretgé, L.G. and Portugal Ferreira, M. (1988) Sintese geocronologica dos granitoides do Macizo Hespérico. In Geología de los granitoides y rocas asociadas del Macizo Hespérico, Rueda, ed. Madrid, 6986.Google Scholar
Shelton, K.L., Taylor, R.P. and So, C.S. (1987) Stable isotope studies of the Dae Hwa Tungsten-Molybdenum Mine, Republic of Korea: Evidence of progressive meteoric water interaction in a tungsten bearing hydrothermal system. Econ. Geol., 82, 471-81.CrossRefGoogle Scholar
Shepherd, T.J., Beckinsale, R.D., Rundle, C.C. and Durnham, J. (1976) Genesis of Carrock Fell tungsten deposits, Cumbria: fluid inclusion and isotopic study. Transactions Institution Mining and Metallurgy, 85, B63-B72.Google Scholar
Shepherd, T.J., Bottrell, S.H. and Miller, M.F. (1991) Fluid inclusion volatiles as an exploration guide to black shale hosted deposits, Dolgellau gold belt, North Wales, UK. Journal Geochemical Exploration, 42, 524.CrossRefGoogle Scholar
Shepherd, T.J., Miller, M.F., Scrivener, R.C. and Darbyshire, D.P.F. (1985) Hydrothermal fluid evolution in relation to mineralization in SW England with special reference to the Dartmoor-Bodmin area. In High Heat Production Granites, Hydrothermal Circulation and Ore Genesis, Institution Mining and Metallurgy, London, 345—64.Google Scholar
Steefel, C.I. and Lasaga, A.C. (1994) A coupled model for transport of multiple chemical species and kinetic precipitation/dissolution reactions with application to reactive flow in single phase hydrothermal systems. Amer. J. Sci., 294, 529-92.CrossRefGoogle Scholar
Strong, D.F. (1988) A model for granophile mineral deposits. In Ore Deposit Models, (Roberts, R.G., Sheanan, P.A., eds.), Geoscience Canada, reprint series 3, 59-66.Google Scholar
Thompson, M., Rankin, A., Walton, S.J., Halls, C. and Foo, B.N. (1980) The analysis of fluid inclusion decrepitate by inductively-coupled plasma atomic emission spectroscopy: an exploration study. Chemical Geology, 30, 121—33.CrossRefGoogle Scholar
Tornos, F. (1990) Los skarns y mineralizaciones asociadas del Sistema Central Español. Modelo de caracterización petrológica, geoquímica y metalo-génica. Thesis Universidad Complutense de Madrid, 487 pp.Google Scholar
Tornos, F., Casquet, C. and Caballero, J.M. (1993a) El sistema hidrotermal ligado al pluton epizonal de Navalcubilla (Sistema Central Español). Revista Sociedad Geológica España, 6, 67—83.Google Scholar
Tornos, F., Casquet, C., Galindo, C. and Caballero, J.M. (1993b). The role of fluid mixing in the genesis of fluorite-barite-base metal veins. In Current Research in Geology Applied to Ore Deposits (Fenoll, P., Torres, J. and Gervilla, F., eds.), 261-4.Google Scholar
Tornos, F., Delgado, A., Casquet, C., Galindo, C. and Reyes, E. (1996) La evolución isotópica de los fluidos ligados a los sistemas hidrotermales tardi y postvariscos del Sistema Central Español. Geogaceta, 20-7, 1501-3.Google Scholar
Vindel, E. (1980). Estudio mineralógico y metalogénico de las rnineralizaciones de la Sierra de Guadarrama. Thesis Universidad Complutense de Madrid, 249 pp.Google Scholar
Walshe, J.L. (1986). A six component chlorite solid solution model and the conditions of chlorite formation in hydrothermal and geothermal systems. Econ. Geol., 81, 681703.CrossRefGoogle Scholar
Wesolowski, D., Drummond, S.E., Mesmer, R.E. and Ohmoto, H. (1984). Hydrolysis equilibria of tungsten (IV) in aqueous sodium chloride solutions to 300°C. Inorganic Chemistry, 23, 1120—32.CrossRefGoogle Scholar