Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T04:06:14.369Z Has data issue: false hasContentIssue false

New minerals with modular structure derived from hatrurite from the pyrometamorphic rocks. Part IV: Dargaite, BaCa12(SiO4)4(SO4)2O3, from Nahal Darga, Palestinian Autonomy

Published online by Cambridge University Press:  21 May 2018

Irina O. Galuskina*
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Frank Gfeller
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
Evgeny V. Galuskin
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Thomas Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
Yevgeny Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 84105, Israel
Mateusz Dulski
Affiliation:
Silesian Center for Education and Interdisciplinary Research and Institute of Material Science, 75 Pułku Piechoty 1a, 41-500 Chorzow, Poland
Mariusz Gardocki
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Lidia Jeżak
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
Mikhail Murashko
Affiliation:
Saint Petersburg State University, Institute of Earth Sciences, 7-9, Universitetskaya nab., St. Petersburg, 199034, Russia
*
Author for correspondence: Irina O. Galuskina, Email: [email protected]

Abstract

Dargaite, ideally BaCa12(SiO4)4(SO4)2O3, is an additional member of the arctite group belonging to minerals with a modular intercalated antiperovskite structure derived from hatrurite. The holotype specimen was found at a small outcrop of larnite pseudoconglomerates in the Judean Mts, West Bank, Palestinian Autonomy. Larnite, fluorellestadite–fluorapatite, brownmillerite, fluormayenite–fluorkyuygenite and ye'elimite are the main minerals of the holotype specimen; ternesite, shulamitite and periclase are noted rarely. Dargaite, nabimusaite and gazeevite occur in linear zones with higher porosity within larnite rocks. Pores are filled with ettringite and Ca-hydrosilicates, less commonly with gibbsite, brucite, baryte, katoite and calciolangbeinite. Dargaite is colourless, transparent with a white streak and has a vitreous lustre. It exhibits pronounced parting and imperfect cleavage along (001). Mohs’ hardness is ~4.5–5.5. The empirical formula is (Ba0.72K0.24Na0.04)Σ1(Ca11.95Mg0.04Na0.01)Σ12([SiO4]0.91 [PO4]0.05[AlO4]0.03[Ti4+O4]0.01)Σ4([SO4]0.84[PO4]0.14[CO3]0.02)Σ2(O2.54F0.46)Σ3. Dargaite is trigonal R$\overline 3 $m, the unit-cell parameters are: a = 7.1874(4) Å, c = 41.292(3) Å, V = 1847.32(19) Å3 and Z = 3. The crystal structure of dargaite was refined from X-ray single-crystal data to R1 = 3.79%. The calculated density is 3.235 g cm–3. The following main Raman bands are distinguished on the holotype dargaite (cm–1): 122, 263, 323, 464, 523, 563, 641 and 644, 829 and 869, 947, 991 and 1116. The formation conditions of dargaite are linked to the local occurrence of pyrometamorphic by-products (gases, fluids and melts) transforming earlier mineral associations at ~900°C.

Type
Article
Copyright
Cppyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Stuart Mills

References

Bentor, Y.K. (editor) (1960) Israel. In: Lexique Stratigraphique International, Asie, Vol. III, (10.2). Centre national de la recherche scientifique, Paris.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247.Google Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Fayos, J., Glasser, F.P., Howie, R.A., Lachowski, E. and Perez-Mendez, M. (1985) Structure of dodecacalcium potassium fluoride dioxide tetrasilicate bis (sulphate), KF.2[Ca6(SO4)(SiO4)2O]: a fluorine-containing phase encountered in cement clinker production process. Acta Crystallographica, C41, 814816.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye., Murashko, M., Wodyka, R. and Dzierżanowski, P. (2015 a) New minerals with modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part I: Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rock of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2015 b) New minerals with modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex, Part II: Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F, and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.Google Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krüger, B., Kusz, J., Vapnik, J., Dulski, M. and Piotr Dżierzanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new ‘old’ mineral from the Negev Desert, Israel, and the ternesite–silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Krzątała, A., Vapnik, Ye., Kusz, J., Dulski, M., Gardocki, M., Gurbanov, A.G. and Dzierżanowski, P. (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499513.Google Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Pauluhn, A. and Olieric, V. (2018 a) Stracherite, BaCa6(SiO4)2[(PO4)(CO3)]F, the first CO3-bearing intercalated hexagonal antiperovskite from Negev Desert, Israel. American Mineralogist, 103(10), 16991706.Google Scholar
Galuskin, E.V., Krüger, B., Galuskina, I.O., Krüger, H., Vapnik, Y., Wojdyla, J.A. and Murashko, M. (2018 b) New mineral with modular structure derived from hatrurite from the pyrometamorphic rocks of the Hatrurim complex: ariegilatite, BaCa12(SiO4)4(PO4)2F2O, from Negev desert, Israel. Minerals, 8(3), article number 109. https://doi.org/10.3390/min8030109Google Scholar
Gfeller, F., Galuskin, E.V., Galuskina, I.O., Armbruster, T., Vapnik, Ye., Włodyka, R. and Dzierżanowski, P. (2013) Natural BaCa6[(SiO4)(PO4)](PO4)2F with a new modular structure type. Goldschmidt 2013 Conference Abstracts. Mineralogical Magazine, 77, 1160; https://doi.org/10.1180/minmag.2013.077.5.7Google Scholar
Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 180.Google Scholar
Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109113.Google Scholar
Krüger, H. (2010) Ca5.45Li3.55[SiO4]3O0.45F1.55 and Ca7K[SiO4]3F3: single-crystal synthesis and structures of two trigonal oxyfluorides. Zeitschrift für Kristallographie – Crystalline Materials, 225, https://doi.org/10.1524/zkri.2010.1268Google Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part lV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Nishi, F. and Takéuchi, Y. (1984) The rhombohedral structure of tricalcium silicate at 1200°C. Zeitschrift für Kristallographie, 168, 197212.Google Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.Google Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112122.Google Scholar
Środek, D., Dulski, M. and Galuskina, I. (2018) Raman imaging as a new approach to dentification of the mayenite group minerals. Scientific Reports, 8(1), article number 13593. https://doi.org/10.1038/s41598-018-31809-4Google Scholar
Sokolova, E.V., Yamnova, N.A., Egorov-Tismenko, Y.K. and Khomyakov, A.P. (1984) The crystal structure of a new sodium-calcium-barium phosphate of Na, Ca and Ba (Na5Ca)Ca6Ba(PO4)6F3. Doklady Akademii Nauk SSSR, 274, 7883.Google Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Supplementary material: File

Galuskina et al. supplementary material

Tables S1-S3

Download Galuskina et al. supplementary material(File)
File 20.3 KB
Supplementary material: File

Galuskina et al. supplementary material

Galuskina et al. supplementary material

Download Galuskina et al. supplementary material(File)
File 6.6 KB