Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T02:07:37.320Z Has data issue: false hasContentIssue false

New mineralogical data on uranophane and β-uranophane; synthesis of uranophane

Published online by Cambridge University Press:  05 July 2018

Fabien Cesbron
Affiliation:
LEMI-ESEM, Université d'Orléans, B.P. 6747, 45069 Orléans Cedex 2—LPCE-CNRS, Orléans, France
Philippe Ildefonse
Affiliation:
Laboratoire de Minéralogie-Cristallographie, associé au CNRS, Université P. et M. Curie, Tour 16, 4 place Jussieu, 75252 Paris Cédex 05, France
Marie-Claude Sichere
Affiliation:
Laboratoire de Minéralogie-Cristallographie, associé au CNRS, Université P. et M. Curie, Tour 16, 4 place Jussieu, 75252 Paris Cédex 05, France

Abstract

Uranyl-silicates are widespread minerals in oxidised parts of various uranium deposits, and they frequently contain associations of the polymorphic forms of uranophane. In several recent works devoted to the study of uranium deposits as natural analogues of high-level nuclear waste repository (HLNWR), uranophane is frequently mentioned but without determination of the exact polymorphic species. The existence of two polymorphs presenting different stabilities has to be taken into account when considering the long-term behaviour of these minerals and the use of thermodynamic models for predicting the radionuclide migration in HLNWR. We present here new crystallographic data on betauranophane, and preliminary results of synthesis experiments of uranyl silicates. XRD patterns and calculated parameters of beta-uranophane from a Mexican U-deposit are presented. Synthesis experiments succeeded in crystallising uranophane (alpha form) at different pH, Si-, Ca- and Na activities, but beta-uranophane was never obtained. The controlling physico-chemical parameters responsible for the occurrence of these two polymorphic forms are still unknown.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alba, L. A. and Chavez, R. (1974) K-Ar ages from volcanic rocks from the Central Pefia Blanca, Chihuahua, Mexico. Isochron West, 10, 213.Google Scholar
Aniel, B. and Leroy, J. (1985) The reduced uraniferous mineralizations associated with the volcanic rocks of the Sierra Pefia Blanca (Chihuahua, Mexico). Amer. Mineral., 70, 1290–7.Google Scholar
Bagby, W. C., Cameron, K. L., Cameron, M., and Gill, J. B. (1976) Petrology of tertiary ash flow tufts and related volcanics from Barranca de Batopilas and Gell regions of the Sierra Madre Occidentale, Chi-huahua, Mexico. Geol. Soc. Am., Abst. with programs, vol. 8, 5, p. 566.Google Scholar
Calas, G. (1977) Les phénomènes d'altération hydro-thermale et leur relation avec les minéralisations unranifères en milieu volcanique: le cas des ignim-brites tertiares de la Sierra Pefia Blanca, Chihuahua, Mexico. Sci. Geol. Bull., 30, 318.Google Scholar
Chapman, N. A. and McKinely, I. G. (1987) The geological disposal of nuclear waste. John Wiley and Sons, Chichester, 280 pp.Google Scholar
Goodell, P. C. (1981) Geology of the Pefia Blanca uranium deposits, Chihuahua, Mexico. In Uranium in volcanic and volcaniclastic rocks (Goodell, P. C. and Waters, A. C., eds.), AAPG Studies in Geology, 13 275-91.Google Scholar
Ildefonse, Ph., Muller, J. P., Cesbron, F., and Sichere, M. C. (1988) Mineralogy of uranium concentrations and associaed hydrothcrmal alteration minerals in ignimbritic tufts, Sierra Pefia Blanca, Chihuahua, Mexico. Geol. Soc. Amer. Abs. Progrs., 20, A336.Google Scholar
Ildefonse, Ph., Cesbron, F., Muller, J. P., and Calas, G. (1989) Study of alteration systems in the light of nuclear waste repository safety. 1—Element remobilization in hy-drothermally altered turfs. Proc. EUG V Congress, Strasbourg, 1989, Terra Abs., 1, 111–2.Google Scholar
Ildefonse, Ph., Muller, J. P., Clozel, B., and Calas, G. (1990) Study of two alteration systems as natural analogues for radionuclide release and migration. Engineering Geol., 29, 413–39.Google Scholar
Novacek, R. (1935) Study of some secondary uranium minerals. Vestnik Kral. Ceske. Spol. Nauk., II, no. 7, 36 pp, 2 pls.Google Scholar
Nguyen, S. N., Silva, R. J., Weed, H. C., and Andrews, J. E. Jr., (1991) Standard Gibbs free energies of formation at 30°C of four uranyl silicates: soddyite, uranophane, sodium boltwoodite and sodium week-site. Lawrence Livermore National Laboratory, Internal Report UCRL-JC-106032.Google Scholar
Reyes, C. M., Cruz, B. R., and Guerrero, P. S. (1980) Descripcion petrographica de las muestras obtenidas de los niveles cero y cuarenta del yacimiento Nopal 1, Sierra Peha Blanca, Municipio de Aldama, Chihuahua. URAMEX Internal Report: Informe 10.Google Scholar
Smith, D. K. and Stohl, F. V. (1972) Crystal structure of beta-uranophane. Geol. Soc. Amer. Mem., 135, 281–8.Google Scholar
Stohl, F. V. and Smith, D. K. (1981) The crystal chemistry of the uranyl silicate minerals. Amer. Mineral., 66, 610–25.Google Scholar
Uramex, (1980) Nopal L Las Margaritas, Puerto III. Unpublished Internal Reports.Google Scholar
Websky, M. (1853) Zeits. Geol. Gesselschafi, 5, 427.Google Scholar