Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-14T12:06:49.677Z Has data issue: false hasContentIssue false

Mössbauer study of redox processes in the evolution of chondrites

Published online by Cambridge University Press:  05 July 2018

T. V. Malysheva*
Affiliation:
V. I. Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, Moscow, Russia

Abstract

The evolution of Fe-containing phases of carbonaceous chondrites heated under various oxidation-reduction conditions was investigated by means of Mössbauer spectroscopy. Heating of the lower petrological types of chondrites (CM2) released gases which initially produced oxidizing conditions (∼450°C) and then reducing conditions (> 700°C Phase transformation occurred rapidly (during 1–5 minutes) at all temperatures. During heating the Fe-bearing phyllosilicate phases in CM2-chondrite converted to Fe-bearing olivine, metallic iron and troilite (pentlandite). These phases resemble those of CO3, CV3 and EH-chondrites. Iron distribution resembling that of ordinary chondrites (some additional Fe2+ in pyroxene) was obtained only by heating a mixture of oxidized matter (CM2) with reduced matter (EH).

A phase transition discovered at 1050°C is probably the temperature boundary between conditions of formation of the two main components of ordinary chondrites: matrix and chondrules. Chondrules of ordinary chondrites may be formed at temperatures > 1050°C while the matrix forms at temperatures < 1050°C For the carbonaceous chondrite Kainzas (CO3) these temperatures are approximately 1000°C and < 900°C The experimental conditions determined for the evolution of chondrites do not contradict the theoretical two-component model of Wood-Anders-Ringwood and may further its development.

Type
Extraterrestrial Material
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, L. H., Willis J. P. and Erlank, A. J. (1973) Meteoritics, 8, 133–9.CrossRefGoogle Scholar
Alexander, C. M. O., Hutchison, R. and Barber, D. J. (1989) Earth Planet. Sci. Lett., 95, 187–207.CrossRefGoogle Scholar
Alfven, H. and Arrhenius, G. (1976) Evolution of the Solar System, Washington, 413 pp. Allegre, C. J. and Birek, J. L. (1985) Meteoritics, 20, 601.Google Scholar
Anders, E. (1964) Space Sci. Rev., 3, 583–714.CrossRefGoogle Scholar
Blander, M. (1979) In Asteroids ed. T. Gehrels, University of Arizona Press, 809-21.Google Scholar
Carr, R. H., Carr, L. P., Wright, J. P., Pillinger, C. T. and Crabe, J. (1984) Lunar Planet. Sci., 15, 135–5.Google Scholar
Clayton, D. D. (1990) Lunar Planet. Sci. Conf., 21, 199–200.Google Scholar
Clayton, D. D., Liffman, K. and Scower, P. (1989) Lunar Planet. Sci. Conf., 20, 167–8.Google Scholar
Clayton, R. N. and Mayeda, T. K. (1981) Earth Planet. Sci., 12, 154–6.Google Scholar
Clayton, R. N., Onuma, N. and Mayeda, T. K. (1976) Earth Planet. Sci. Lett., 30, 10–18.CrossRefGoogle Scholar
Clayton, R. N., Onuma, N., Grossman, L. and Mayeda, T. K. (1977) Earth Planet. Sci. Lett., 34, 209–24.CrossRefGoogle Scholar
Clayton, R. N., Mayeda, T. K. and Rubin, A. E. (1984) Lunar Planet Sci. Conf., 15, 172–30.Google Scholar
Clayton, R. N., Mayeda, T. K. Olsen, E. J. and Goswami, J. N. (1990) Lunar Planet. Sci. Conf., 21, 201–2.Google Scholar
Galimov, E. M. (1979) Geochimia, 2, 274–84.(in Russian)Google Scholar
Gooding, J. L. and Muenow, D. W. (1977) Meteoritics, 12, 401–8.CrossRefGoogle Scholar
Gooding, J. L., Mayeda, T. K., Clayton, R. N. and Fukuoka, T. (1983) Earth Planet. Sci. Lett., 65, 209–24.CrossRefGoogle Scholar
Hashimoto, A., Kumazawa, M. and Onuma, N. (1979) Earth Planet. Sci. Lett., 34, 13–21.CrossRefGoogle Scholar
Herr, W. and Skerra, B. (1969) In: Meteorite Research, Dordrecht, Holland 15-33.Google Scholar
Huebner, I. S. and Nord, G. L. Jr (1981) Lunar Planet. Sci., 12, 279–81.Google Scholar
Huss, G. R., Keil, K. and Taylor, G. J. (1981) Geochim. Cosmochim. Acta, 45, 33–51.CrossRefGoogle Scholar
Ivanov, A. V., Skripnik, A. Ja., Uljanov, A. A., Barsukova, L. D., Kolesov, G. M. and Kononko-va, N. N. (1986) Meteoritika, 45, 3–19.(in Russian)Google Scholar
Kerridge, J. E. and MacDougal, J. D. (1976) Earth Planet. Sci. Lett., 29, 341–8.CrossRefGoogle Scholar
Kurat, G., Pernika, E. and Herrwerth, I. (1984) Earth Planet. Sci. Lett., 68, 43–56.CrossRefGoogle Scholar
Larimer, J. W. and Anders, E. (1970) Geochim. Cosmochim. Acta, 34, 367–87.CrossRefGoogle Scholar
Latimer, W. M. (1950) Science, 112, 101–4.CrossRefGoogle Scholar
Levin, B. (1965) Uspechi Phys. Nauk, 86, 41–69.(in Russian)CrossRefGoogle Scholar
Malysheva, T. V. (1975) Mossbauer Effect in Geochemistry and Cosmochemistry, Nauka, Moscow, 166p (in Russian)Google Scholar
Malysheva, T. V. (1977) Geochimia, 12, 1782–93.(in Russian)Google Scholar
Malysheva, T. V., Tobelko, K. I., Khramov, D. A. and Matveeva, O. A. (1979) Proc. Lunar Planet. Sci. Conf, 977-88.Google Scholar
Malysheva, T. V., Shevaleevsky, I. D. and Shcher-bovsky, E. Ja. (1980) Lunar Planet, Sci., 11, 666–8.Google Scholar
Malysheva, T. V., Tobelko, K. I., Shcherbovsky, E. Ya., Khramov, D. A. and Malyshev, A. I. (1982) Earth Planet. Sci. Lett., 60, 8–16.CrossRefGoogle Scholar
Malysheva, T. V., Tobelko, K. I., Polosin, A. V. and Smirnova, E. P. (1984) Meteoritika, 43, 134–9.(in Russian)Google Scholar
Malysheva, T. V., Baryshnikova, G. V. and Polosin, A. V. (1986) Meteoritika, 45, 85–95.(in Russian)Google Scholar
Malysheva, T. V., Savinova, E. N. and Gubanova, V. V. (1988) Meteoritika, 47, 151–5.(in Russian)Google Scholar
Malysheva, T. V. Lavrukhina, A. K., Baryshnikova, G. V. and Tobelko, K. I. (1989) Geochimia, 6, 838–52.(in Russian)Google Scholar
Mason, B. (1960) J. Geophys. Res., 65, 2965-70.Google Scholar
Mason, B. (1971) Ed: Handbook of elemental abundances in meteorites, Gordon and Breach, New York, London and Paris 555 pp.Google Scholar
Matza, S. D. and Lipschutz, M. E. (1978. Geochim. Cosmochim. Acta, 42, 1655–67.CrossRefGoogle Scholar
Nagahara, H. (1984) Geochim. Cosmochim. Acta, 48, 2581–95.CrossRefGoogle Scholar
Prior, G. T. (1916) Mineral. Mag., 18, 26–4.Google Scholar
Prior, G. T. (1920) Mineral. Mag., 19, 51–63.Google Scholar
Ramensee, W. and Wanke, S. (1981) Meteoritics, 16, 379.Google Scholar
Ringwood, A. E. (1961) Geochim. Cosmochim. Acta, 24, 159–97.CrossRefGoogle Scholar
Ringwood, A. E. (1966) Rev. Geophys. Space PhysA, 113-75.CrossRefGoogle Scholar
Ringwood, A. E. (1981) Composition and Origin of the Earth, Nauka, Moscow, 88-93 (in Russian)Google Scholar
Roy-Poulsen, H., Larsen, L., Roy-Poulsen, N. O. and Vistisen, L. (1981. Physika Scripta, 23, 113–7.Google Scholar
Ruzmajkina, T. V. (1990) Lunar Planet. Sco. Conf, 21, 1053.Google Scholar
Ruzmajkina, T. V. and Maeva, S. V. (1986. Astronomichesky Vestnik, 19, 212–27.(in Russian)Google Scholar
Sprenkel-Segel, E. L. and Hanna, S. S. (1964) Geochim. Cosmochim. Acta, 28, 1913–32.CrossRefGoogle Scholar
Urey, H. C. (1952) The Planets, Yale University Press.Google Scholar
Urey, H. C. (1964. Ref. Geophys., 2, 1–34.CrossRefGoogle Scholar
Urey, H. C. and Craig, H. (1953) Geochim. Cosmochim. Acta, 4, 36–82.CrossRefGoogle Scholar
Vdovykin, G. P., Grachev, V. I., Malysheva, T. V. and Satarova, L. M. (1975) Geochimia, 12, 1872–84.(in Russian)Google Scholar
Virgo, D. (1972) Ann. Rep. Direct. Geophys. Lab., Carnegie Inst., Washington, 541-545.Google Scholar
Wasson, J. T. (1977) Meteoritics, 12, 381–3.Google Scholar
Wasson, J. T., Rasmussen, K. L. and Grossman, J. N. (1982) Meteoritics, 17, 294–5.Google Scholar
Wood, J. A. (1953) Icarus, 2, 153–80.Google Scholar
Wood, J. A. (1967) Icarus, 6, 1–9.CrossRefGoogle Scholar
Wood, J. A. (1971) Meteorites and the Origin of the Solar System, Mir, Moscow, 172 pp.Google Scholar
Wood, J. A. (1985) Meteoritics, 20, 787–788.Google Scholar