Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T01:48:22.725Z Has data issue: false hasContentIssue false

Monazite structure from dehydrated CaSeO4·2H2O

Published online by Cambridge University Press:  05 July 2018

W. A. Crichton*
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, UK
H. Müller
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
M. Merlini
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France Dipartimento di Scienze della Terra “Ardito Desio”, Università degli Studi di Milano, via Mangiagalli 34, 20133 Milano, Italy
T. Roth
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
C. Detlefs
Affiliation:
European Synchrotron Radiation Facility, 6 rue Jules Horowitz, 38043 Grenoble Cedex, France
*

Abstract

The structure of the high-temperature form of CaSeO4, formed by dehydration of the gyspum-type structure dihydrate is presented. The material is equivalent to that described previously as a P212121 form, but is however, a monazite with unit cell a = 6.85661(16) Å, b = 7.04962(15) Å, c = 6.68817(15) Å and β = 104.2675(21)° in space group P121/n1. Also presented is evidence for two intermediate trigonal and pseudo-trigonal phases related to the structurally similar minerals rhabdophane, bassanite, and γ-CaSO4. This result permits closer comparisons between intermediate-temperature structures of the selenate with related sulphates, and orthophosphates with a view to extending structural stability via synthesis of solid-solutions.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abriel, W., Reisdorf, K. and Pannetier, J. (1990) Dehydration reactions of gypsum – A neutron and X-ray diffraction study. Journal of Solid State Chemistry, 85, 2330.CrossRefGoogle Scholar
Adam, C.D. (2003) Atomistic modeling of the hydration of CaSO4 . Journal of Solid State Chemistry, 174, 141151.CrossRefGoogle Scholar
Andara, A.J., Heasman, D.M., Fernádez-González, A. and Prieto, M. (2005) Characterization and crystallization of Ba(SO4,SeO4) solid solution. Crystal Growth & Design, 5, 13711378.CrossRefGoogle Scholar
Aslanian, S., Stoilova, D. and Petrova, R. (1980) Isodimorphous substitution in the system CaSO4-CaHPO4-H2O. Zeitschrift für Anorganische und Allgemeine Chemie, 465, 209220.CrossRefGoogle Scholar
Atkin, D., Basham, I.R. and Bowles, J.F.W. (1983) Tristramite, a new calcium uranium phosphate of the rhabdophane group. Mineralogical Magazine, 47, 393396.CrossRefGoogle Scholar
Azorin, J., Furetta, C., Gutierrez, A. and Gonzales, P. (1991) Thermoluminescence characteristics of BaSO4-Eu. Applied Radiation and Isotopes, 42, 861863.CrossRefGoogle Scholar
Badens, E., Llewellyn, P., Fulconis, J.M., Jourdan, C., Veesler, S., Boistelle, R. and Rouquerol, F. (1998) Study of gypsum dehydration by controlled transformation rate thermal analysis. Journal of Solid State Chemistry, 139, 3744.CrossRefGoogle Scholar
Ball, M.C. and Urie, R.G. (1970) Studies in the system calcium sulphate-water. 2. Kinetics of dehydration of beta-CaSO4·1/2H2O. Journal of the Chemical Society A – Inorganic, Physical and Theoretical Chemistry, 3, 528530.Google Scholar
Ballirano, P. and Melis, E. (2009a) Thermal behaviour and kinetics of dehydration of gypsum in air from in situ real-time laboratory parallel-beam X-ray powder diffraction. Physics and Chemistry of Minerals, 36, 391402.CrossRefGoogle Scholar
Ballirano, P. and Melis, E. (2009 b) Thermal behaviour and kinetics of dehydration in air of bassanite, calcium sulphate hemihydrate (CaSO4·0.5H2O), from X-ray powder diffraction. European Journal of Mineralogy, 21, 985993.CrossRefGoogle Scholar
Ballirano, P., Maras, A., Meloni, S. and Caminiti, R. (2001) The monoclinic I2 structure of bassanite, calcium sulphate hemihydrate (CaSO4·0.5H2O) European Journal of Mineralogy, 13, 985993.CrossRefGoogle Scholar
Bastide, J.P. (1987) Simplified systematics of the compounds ABX4 (X = O2–, F). Journal of Solid State Chemistry, 71, 115120.CrossRefGoogle Scholar
Bellanca, A. (1946) Sulla struttura della ferrucite. Rendiconti della Societa Minerologica Italiana, 3, 2021.Google Scholar
Ben Amara, M., le Flem, G. and Hagenmuller, P. (1983) Structure of the low-temperature variety of calcium sodium orthophosphate, NaCaPO4 . Acta Crystallographica C, 39, 14831485.CrossRefGoogle Scholar
Bezou, C., Nonat, A., Mutin, J.C., Christensen, A.N. and Lehmann, M.S. (1995) Investigation of the crystal-structure of gamma-CaSO4, CaSO4·0.5H2O, and CaSO4·0.6H2O by powder diffraction methods. Journal of Solid State Chemistry, 117, 165176.CrossRefGoogle Scholar
Borg, I.Y. and Smith, D.K. (1975) High-pressure polymorph of CaSO4 . Contributions to Mineralogy and Petrology, 50, 127133.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (1991) Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method. Journal of Applied Crystallography, 24, 987993.CrossRefGoogle Scholar
Bradbury, S.E. and Williams, Q. (2009) X-ray diffraction and infrared spectroscopy of monazite-structured CaSO4 at high pressures: implications for shocked anhydrite. Journal of Physics and Chemistry of Solids, 70, 134141.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database. Acta Crystallographica B, 41, 244247.CrossRefGoogle Scholar
Burns, P.C., Hawthorne, F.C., MacDonald, D.J., della Ventura, G. and Parodi, G.C. (1993) The crystal-structure of stillwellite. The Canadian Mineralogist, 31, 147152.Google Scholar
Carbone, M., Ballirano, P. and Caminiti, R. (2008) Kinetics of gypsum dehydration at reduced pressure: an energy dispersive X-ray diffraction study. European Journal of Mineralogy, 20, 621627.CrossRefGoogle Scholar
Christensen, A.N., Olesen, M., Cerenius, Y. and Jensen, T.R. (2008) Formation and transformation of five different phases in the CaSO4-H2O system: Crystal structure of the subhydrate beta-CaSO4·0.5H2O and soluble anhydrite CaSO4 . Chemistry of Materials, 20, 21242132.CrossRefGoogle Scholar
Crichton, W.A., Parise, J.B., Antao, S.M. and Grzechnik, A. (2005) Evidence for monazite-, barite-, and AgMnO4 (distorted barite)-type structures of CaSO4 at high pressure and temperature. American Mineralogist, 90, 2227.CrossRefGoogle Scholar
Dooley, J.R. Jr and Hathaway, J.C. (1961) Two occurrences of thorium-bearing minerals with rhabdophane-like structure. U.S. Geological Survey Professional Paper, 424-C, 339341.Google Scholar
Dumm, J.Q. and Brown, P.W. (1997) Phase formation in the system CaO-SeO2-H2O. Journal of the American Ceramic Society, 80, 24882494.CrossRefGoogle Scholar
Effenberger, H. and Pertlik, F. (1986) 4 monazite type structures- comparison of SrCrO4, SrSeO4, PbCrO4 (crocoite) and PbSeO4 . Zeitschrift für Kristallographie, 176, 7583.CrossRefGoogle Scholar
Fernández-González, A., Andara, A., Alía, J.M. and Prieto, M. (2006) Miscibility in the CaSO4-2H2O-CaSeO4-2H2O system: Implications for the crystallization and dehydration behaviour. Chemical Geology, 225, 256265.CrossRefGoogle Scholar
Finney, J.J. and Rao, N.N. (1967) Crystal structure of cheralite. American Mineralogist, 52, 1319.Google Scholar
Fisher, F.G. and Meyrowitz, R. (1962) Brockite, a new calcium thorium phosphate from Wet Mountains, Colorado. American Mineralogist, 47, 13461355.Google Scholar
Fisher, R.D. and Walton, R.I. (2009) Time and position resolved in situ X-ray diffraction study of the hydrothermal conversion of gypsum monoliths to hydroxyapatite. Dalton Transactions, 2009, 80798086.CrossRefGoogle Scholar
Freyer, D. and Voigt, W. (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatshefte für Chemie, 134, 693719.CrossRefGoogle Scholar
Freyer, D., Reck, G., Brenner, M. and Voigt, W. (1999) Thermal behaviour and crystal structure of sodium-containing hemihydrates of calcium sulphate. Monatshefte für Chemie, 130, 11791193.Google Scholar
Furuta, S., Katsuki, H. and Komarneni, S. (1999) Microwave-versus conventional-hydrothermal synthesis of hydroxyapatite crystals from gypsum. Journal of the American Ceramic Society, 82, 22572259.Google Scholar
Gaft, M., Reisfeld, R., Panczer, G. and Dimova, M. (2008) Time-resolved laser-induced luminescence of UV-vis emission of Nd3+ in fluorite, scheelite and barite. Journal of Alloys and Compounds, 451, 5661.CrossRefGoogle Scholar
Gedam, S.C., Dhoble, S.J. and Moharil, S.V. (2008) Eu2+ and Ce3+ emission in sulphate based phosphors. Journal of Luminescence, 28, 16.CrossRefGoogle Scholar
Guan, B.H., Ma, X.F., Wu, Z. Yang, L.C. and Shen, Z.X. (2009) Crystallisation routes and metastability of α-calcium sulphate hemihydrate in potassium chloride solutions under atmospheric pressure. Journal of Chemical and Engineering Data, 54, 719725.CrossRefGoogle Scholar
Hand, R.J. (1997) Calcium sulphate hydrates: a review. British Ceramic Transactions, 96, 116120.Google Scholar
Hartig, N.S., Dorhout, P.K. and Miller, S.M. (1994) Hydrothermal synthesis of copper selenides CsCu4Se3 and CsCuSe4 . Journal of Solid State Chemistry, 113, 8893.CrossRefGoogle Scholar
Heijnen, W.M.M. and Hartman, P. (1991) Structural morphology of gypsum (CaSO4·2H2O), brushite ( CaHPO4·2H2O) and pharmacolite (CaHAsO4·2H2O). Journal of Crystal Growth, 108, 290300.CrossRefGoogle Scholar
Irodova, A.V., Somenkov, V.A., Kurchatov, I.V., Bakum, S.I., Kuznetsova, S.F. and Kurnakov, N.S. (1989) Structure of NaGaH4(D4). Zeitschrift für Physikalische Chemie, 163, 239242.CrossRefGoogle Scholar
Jacques, S.D.M., Gonzáles-Saborido, A., Leynaud, O., Bensted, J., Tyrer, M., Greaves, R.I.W. and Barnes, P. (2009) Structural evolution during the dehydration of gypsum materials. Mineralogical Magazine, 73, 421432.CrossRefGoogle Scholar
Knight, K.S. (2000) A high temperature structural transition in crocoite (PbCrO4) at 1068 K: crystal structure refinement at 1073 K and thermal expansion tensor determination at 1000 K. Mineralogical Magazine, 64, 291300.CrossRefGoogle Scholar
Kohlbeck, F. and Horl, E.M. (1976) Indexing program for powder patterns especially suitable for triclinic, monoclinic and orthorhombic lattices. Journal of Applied Crystallography, 9, 2833.CrossRefGoogle Scholar
Kohlmann, M., Sowa, H., Reithmayer, K., Schulz, H., Krueger, R.R. and Abriel, W. (1994) Structure of (Y(1-x)(Gd, Dy, Er) x )PO4·2H2O microcrystal using synchrotron radiation. Acta Crystallographica C, 50, 16511652.CrossRefGoogle Scholar
Lager, G.A., Armbruster, T., Rotella, F.J., Jorgensen, J.D. and Hinks, D.G. (1984) A crystallographic study of the low-temperature dehydration products of gypsum, CaSO4·2H2O; hemihydrate CaSO4·0.5H2O; and γ-CaSO4 . American Mineralogist, 69, 910919.Google Scholar
Larson, A.C. and von Dreele, R.B. (1988) GSAS General Structure Analysis System LAUR86748. Los Alamos National Laboratory, New Mexico, USA.Google Scholar
Linthout, K. (2007) Tripartite division of the system 2REEPO4-CaTh(PO4)2-2ThSiO4, discreditation of brabantite, and recognition of cheralite as the name for members dominated by CaTh(PO4)2 . The Canadian Mineralogist, 45, 503508.CrossRefGoogle Scholar
Liu, J., Duan, C.G., Mei, W.N., Smith, R.W. and Hardy, J.R. (2002) Order-disorder structural phase transitions in alkali perchlorates. Journal of Solid State Chemistry, 163, 294299.CrossRefGoogle Scholar
Liu, L.-G. and Bassett, W.A. (1986) Oxford Monographs on Geology and Geophysics No. 4. Oxford University Press, New York, USA, 1986 pp., 146 et seq.Google Scholar
Louër, D. and Louër, M. (1972) Trial-and-error method for automatic indexing of powder diagrams. Journal of Applied Crystallography, 5, 271275.CrossRefGoogle Scholar
Lowmunkong, R., Sohmura, T., Takahashi, J., Suzuki, Y., Matsuya, S. and Ishikawa, K. (2007) Transformation of 3DP gypsum model to HA by treating in ammonium phosphate solution. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 80, 386393.CrossRefGoogle Scholar
Lucas, S., Champion, E., Bernache-Assollant, D. and Leroy, G. (2004) Rare earth phosphate powders RePO4·nH2O (Re = La, Ce or Y) – Part I. Synthesis and characterization. Journal of Solid State Chemistry, 177, 13121320.CrossRefGoogle Scholar
Mackowiak, C.L. and Amacher, M.C. (2008) Soil sulfur amendments suppress selenium uptake by alfalfa and western wheatgrass. Journal of Environmental Quality, 37, 772779.CrossRefGoogle ScholarPubMed
Mayer, I., Levy, E. and Glasner, A. (1964) Crystal structure of EuSO4 + EuCO3 . Acta Crystallographica, 17, 10711072.CrossRefGoogle Scholar
McConnel, J.D.C (1965) Study of reaction CaSO4·1/2H2O (beta-hemihydrate) = CaSO4 (beta-soluble anhydrite) + ½ H2O in temperature range 20_100°C. Mineralogical Magazine, 34, 327345.CrossRefGoogle Scholar
McGregor, A.L., Joknson-Maynard, J.L., Strawn, D.G., Shafii, B. and Moller, G. (2008) Plant uptake and leaching of selenium in manure- and gypsum- amended soils of the Western Phosphate Resource Area. Soil Science, 173, 613623.CrossRefGoogle Scholar
Mees, F., Hatert, F. and Rowe, R. (2008) Omongwaite, Na2Ca5(SO4)6·3H2O, a new mineral from recent salt lake deposits, Namibia. Mineralogical Magazine, 72, 13071318.CrossRefGoogle Scholar
Mirwald, P.W. (2008) Experimental study of the dehydration reactions gypsum-bassanite and bassanite- anhydrite at high pressure: Indication of anomalous behaviour of H2O at high pressure in the temperature range of 50–300°C. Journal of Chemical Physics, 128, 074502.CrossRefGoogle Scholar
Mooney, R.C.L. (1948) Crystal structures of a series of rare earth phosphates. Journal of Chemical Physics, 16, 10031003.CrossRefGoogle Scholar
Mooney, R.C.L. (1950) X-ray diffraction study of cerous phosphate and related crystals. 1. Hexagonal modification. Acta Crystallographica, 3, 337340.CrossRefGoogle Scholar
Mooney-Slater, R.C.L. (1962) Polymorphic forms of bismuth phosphate. Zeitschrift für Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 117, 371385.CrossRefGoogle Scholar
Mullica, D.F., Grossie, D.A. and Boatner, L.A. (1985) Coordination geometry and structural determinations of SmPO4, EuPO4 and GdPO4 . Inorganica Chimica Acta, 109, 105110.CrossRefGoogle Scholar
Naray-Szabo, I. and Argay, G. (1965) Die Kristallstruktur des Krokoits, PbCrO4 . Acta Chimica Academiae Scientiarum Hungaricae, 40, 283288.Google Scholar
Nieto, J.A. (1998) Thermoluminescence and optical characteristics of europium-doped barium sulphate. Radiation Physics and Chemistry, 51, 471472.CrossRefGoogle Scholar
Nishimura, T. and Hata, R. (2007) Chemistry of the Ca-Se(IV)-H2O and Ca-Se(VI)-H2O systems at 25°C. Hydrometallurgy, 89, 346356.CrossRefGoogle Scholar
Perenthaler, E., Schultz, H. and Rabenau, A. (1982) Die Strukturen von LiAlCl4 und NaAlCl4 als Funktion der Temperatur. Zeitschrift für Anorganische und Allgemeine Chemie, 491, 259265.CrossRefGoogle Scholar
Pinto, A.J., Jimenez, A. and Prieto, M. (2008) Dehydration behaviour of the Ca(SO4,HPO4)·2H2O solid solution. Mineralogical Magazine, 72, 277281.CrossRefGoogle Scholar
Pinto, A.J., Jimenez, A. and Prieto, M. (2009) Interaction of phosphate-bearing solutions with gypsum: Epitaxy and induced twinning of brushite (CaHPO4·2H2O) on the gypsum cleavage surface. American Mineralogist, 94, 313322.CrossRefGoogle Scholar
Prasad, P.S.R., Pradhan, A. and Gowd, T.N. (2001) In situ micro-Raman investigation of dehydration mechanism in natural gypsum. Current Science, 80, 12031207.Google Scholar
Prasad, P.S.R., Chaitanya, V.K., Prasad, K.S. and Rao, D.N. (2005) Direct formation of the γ-CaSO4 phase in dehydration process of gypsum: In situ FTIR study. American Mineralogist, 90, 672678.CrossRefGoogle Scholar
Quareni, S. and de Pieri, R. (1964) La struttura della crocoite PbCrO4 . Rendiconti della Societa Mineralogica Italiana, 20, 235250.Google Scholar
Rao, T.K.G., Shinde, S.S., Bhatt, B.C., Shirvastava, J.K. and Nambi, K.S.V. (1995) Electron-spin-resonance, thermoluminescence and fluorescence studies on BaSO4-Eu and BaSO4-Eu, P thermoluminescent phosphors. Journal of Physics: Condensed Matter, 7, 65696581.Google Scholar
Rinaudo, C., Lanfranco, A.M. and Boistelle, R. (1996) The gypsum-brushite system: Crystallization from solutions poisoned by phosphate ions. Journal of Crystal Growth, 158, 316321.CrossRefGoogle Scholar
Romero, B., Bruque, S., Aranda, M.A.G. and Iglesias, J.E. (1994) Synthesis, crystal structures and characterization of bismuth phosphates. Inorganic Chemistry, 33, 18691874.CrossRefGoogle Scholar
Sakae, T., Nagata, H. and Sudo, T. (1978) Crystal-structure of synthetic calcium phosphate-sulphate hydrate Ca2HPO4SO4·4H2O, and its relation to brushite and gypsum. American Mineralogist, 63, 520527.Google Scholar
Salah, N., Lochab, S.P., Kanjilal, D., Mehra, J., Sahare, P.S., Ranjan, R., Rupasov, A.A. and Aleynikov, V.E. (2008) Thermoluminescence of BaSO4:Eu irradiated with 48 MeV Li3+ and 150 MeV Ag2+ ions. Journal of Physics D: Applied Physics, 41, 085408, 6 pp.CrossRefGoogle Scholar
Salah, N., Habib, S.S., Khan, Z.H., Al-Hamedi, S. and Lochab, S.P. (2009) Nanoparticles of BaSO4:Eu for heavy-dose measurements. Journal of Luminescence, 129, 192196.CrossRefGoogle Scholar
Schofield, P.F., Knight, K.S., van der Houwen, J.A.M. and Valsami-Jones, E. (2004) The role of hydrogen bonding in the thermal expansion and dehydration of brushite, di-calcium phosphate dihydrate. Physics and Chemistry of Minerals, 31, 606624.CrossRefGoogle Scholar
Shi, Y., Liang, J., Zhang, H., Liu, Q., Chen, X., Yang, J., Zhuang, W. and Rao, G. (1998) Crystal structure and thermal decomposition studies of barium borophosphate, BaBPO5 . Journal of Solid State Chemistry, 135, 4351.CrossRefGoogle Scholar
Shirley, R. (2004) Crysfire system v. 2004; R. Shirley, 41 Guildford Park Ave., Guilford, Surrey GU2 7NL, UK.Google Scholar
Snyman, H.C. and Pistorius, C.W.F.T. (1963) Some crystallographic properties of CaSeO4 and its hydrates. Zeitschrift fü r Kristallographie, Kristallgeometrie, Kristallphysik, Kristallchemie, 119, 151154.CrossRefGoogle Scholar
Visser, J.W. (1969) A fully automatic program for finding unit cell from powder data. Journal of Applied Crystallography, 2, 8995.CrossRefGoogle Scholar
Vlasse, M., Bochu, P., Parent, C., Chaminade, J.P., Daoudi, A., le Flem, G. and Hagenmuller, P. (1982) Structure determination of calcium neodymium potassium double phosphate CaKNd(PO4)2 . Acta Crystallographica B, 38, 23282331.CrossRefGoogle Scholar
Weiss, H. and Bräu, M.F. (2009) How much water does calcined gypsum contain? Angewandte Chemie – International Edition, 48, 35203524.Google ScholarPubMed
Woodbury, P.B., Arthur, M.A., Rubin, G., Wienstein, L.H. and McCune, D.C. (1999) Gypsum application reduced selenium uptake by vegetation on a coal ash landfill. Water Air and Soil Pollution, 110, 421432.CrossRefGoogle Scholar
Zaki, M., Aamili, A., El Ghozzi, M., Zambon, D., Zahir, M., Sadel, A. and Cousseins, J.C. (1994) Synthesis and crystal chemistry of the rare earth phosphate: HoPO4·xKOH (x ⩽ 1). Advanced Materials Research, 1/2, 201208.CrossRefGoogle Scholar