Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:12:51.842Z Has data issue: false hasContentIssue false

Modification of antiphase domain sizes in omphacite by dislocation glide and creep mechanisms and its petrological consequences

Published online by Cambridge University Press:  05 July 2018

H. L. M. van Roermund
Affiliation:
Ecole Normale Supérieure de Lyon, Lab. des Sciences de la Terre, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
J. M. Lardeaux
Affiliation:
Ecole Normale Supérieure de Lyon, Lab. des Sciences de la Terre, 46 Allée d'Italie, 69364 Lyon Cedex 07, France

Abstract

A T.E.M. study of omphacites from the western Italian Alps (Sesia Lanzo Zone and Monviso eclogites) has revealed a bimodal size distribution of antiphase domains: (a) 250–350 Å, (b) ≥ 2500 Å. In addition observed dislocation substructures and ‘large-scale’ antiphase domains are intimately interconnected.

A model is presented that can explain modification of the antiphase domain sizes by the interplay of cooling/growth and dislocation glide and/or creep mechanisms. Subsequent coarsening of the modified antiphase domains is inferred to be the result of surface free-energy processes. The model clearly illustrates that only the ‘relatively undeformed’ areas containing the small-scale antiphase domains can be used for thermometric methods.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Present address: Laboratoirc de Pétrologie Métamorphique, C.N.R.S., URA 736, Université de Paris 7, 4 Place Jussieu, F-75252 Paris Cedex 05, France.

References

Avé-Lallement, H. G. (1978) Experimental deformation of diopside and websterite. Tectonophys., 48, 127.CrossRefGoogle Scholar
Boland, J. N. and Tullis, T. E. (1986) Deformation behavior of wet and dry clinopyroxenite in the brittle to ductile transition region. In Mineral and rock deformation, lab. studies, The Patterson Volume. Geoph. Monograph. Ser. Vol. 36 (B. E., Hobbs and H. G., Heard, eds.), 35-9. Am. Geoph. Union. Washington D.C. CrossRefGoogle Scholar
Buatier, M. and Lardeaux, J. M. (1987) Deformation intracristalline de l'omphacite et du grenat en conditions de haute pression et basse température: exemple des éclogites de la zone Sesia-Lanzo (Alpes occidentales). C.R. Acad. Sc. Paris, 305, 797800.Google Scholar
Buatier, M., van Roermund, H. L. M., Drury, M., and Lardeaux, J. M. (1991) Deformation and recrystal-lisation mechanisms in naturally deformed omphacites from the Sesia-Lanzo zone. Tectonophys. In press.CrossRefGoogle Scholar
Buseck, P. R., Nord, G. L., and Veblen, D. R. (1980) subsolidus phenomena in pyroxenes. In: Prewitt, C. T. (ed.), Reviews in Mineralogy, 7. Pyroxenes. Min. Soc. Am., 117204.Google Scholar
Caby, R., Kienast, J. R., and Saliot, P. (1978) Structure, metamorphisme et modèle d'évolution des Alpes occidentales. Rev. Géogr. Phys. Géol. Dyn., 1, 307-22.Google Scholar
Carpenter, M. A. (1981a) Omphacite microstructures as time-temperature indicators of blueschist and eclogite facies metamorphism. Contrib. Mineral. Petrol, 78, 441-51.CrossRefGoogle Scholar
Carpenter, M. A. (1981b) Time-Temperature-Transformation (TTT) analysis of cation disordering in omphacite. Ibid. 78, 433–0.Google Scholar
Carswell, D. A., Krogh, E. J., and Griffin, W. L. (1985) Norwegian orthopyroxene eclogites: calculated equilibrium conditions and petrogenetic implications. In Gee D. G. and Sturt B. A. (eds.), The Caledonide Orogen in Scandinavia and Related Areas. John Wiley, 823-42.Google Scholar
Champness, P. E. (1973) Speculation on an order-disorder transformation in omphacite. Am. Mineral., 58, 540–2.Google Scholar
Compagnoni, R., Dal Piaz, G. V., Hunziker, J. C., Gosso, G., Lombardo B., and Williams, P. F. (1977) The Sesia-Lanzo Zone, a slice of continental crust with alpine high-pressure-low-temperature assemblages in theWestern Italian Alps. Rend. Soc. It. Min. Petrol., 33, 281334.Google Scholar
Dal Piaz, G. V. (1974) Le métamorphisme de haute pression et basse température dans l'évolution structurale du bassin ophiolitique alpino-apennique (lere partie: considérations paléogéographiques). Bull. Soc. Geol. It., 93, 437-68.Google Scholar
Ellis, D. J. and Green, D. H. (1979) An experimental study of the effect of Ca upon garnet-clinopyroxene Fe-Mg exchange equilibria. Contrib. Mineral. Petrol., 71, 1322.CrossRefGoogle Scholar
Ingrin, J., Doukhan, N., and Doukhan, J. C. (1991) High-temperature deformation of diopside single crystals; part II: TEM investigation of the induced defect microstructures. Submitted to J. Geophys. Research. CrossRefGoogle Scholar
Kienast, J. R. (1983) Le métamorphisme de haute pression et basse température (éclogites et schistes bleus): données nouvelles sur la pétrologie de la croûte océanique subductée et des sédiments associés. These Dr. Sci., Université P. et M. Curie, Paris, 384 pp.Google Scholar
Kienast, J. R. Lombardo, B., Biino, G., and Pinardon, J. L. (1991) Petrology of very-high-pressure eclogitic rocks from the Brossasco-Isasca complex, Dora-Maira massif, Italian Western Alps. J. Metamorphic Geol., 9, 1934.CrossRefGoogle Scholar
Kirby, S. H. and Kronenberg, A. K. (1984) Deforma-tion of clinopyroxenite: Evidence for a transition in flow mechanisms and semi-brittle behavior. J. Geophys. Research, 89, 3177-92.CrossRefGoogle Scholar
Koons, P. O. (1982) An investigation of experimental and natural high-pressure assemblages from the Sesia Zone, Western Italian Alps, Italy. PhD. thesis, ETH Zurich, 261 pp.Google Scholar
Lardeaux, J. M. and Spalla, M. I. (1991) From granulites to eclogites in the Sesia Lanzo zone (Italian Western Alps): a record of the opening and closure of the Piemonte ocean. J. Metamorphic Geol, 9, 125.CrossRefGoogle Scholar
Lardeaux, J. M., Gosso, G., Kienast, J. R., and Lombardo, B. (1982) Relations entre le métamorphisme et la déformation dans la zone Sesia-Lanzo (Alpes occidentales) et le problemè de l'éclogitisation de la croûte continentale. Bull. Soc. Géol France, 24, 793800.CrossRefGoogle Scholar
Lardeaux, J. M., Caron, J. M., Nisio, P., Pequignot, G., and Boudeulle, M. (1986). Microstructural criteria for reliable thermometry in low-temperature eclogites. Lithos, 19, 187203.CrossRefGoogle Scholar
Lombardo, B., Nervo, R., Compagnoni, R., Messiga, B., Kienast, J. R., Mevel, C., Fiora, L., Piccardo, G. B., and Lanza, R. (1978) Observationi preliminari sulle ofioliti metamorfiche del Monviso (Alpi occi-dentali). Rend. Soc. It. Mineral. Petrol., 34, 253305.Google Scholar
Nisio, P. (1985) Les domaines d'antiphase des omphacites et la pétrologie des éclogites: contribution à l'étude de revolution tectonométamorphique du Monviso (Alpes italiennes occidentales). Thèse de doctorat, Univ. Lyon 1, 137 pp.Google Scholar
Nisio, P. Lardeaux, J. M., and Boudeulle, M. (1987) Évolutions tectonométamorphiques contrastées des éclogites dans le massif de Viso; consequences de la fragmentation de la croûte océanique lors de l'oro-genese alpine. C.R. Acad. Sc. Paris, 304, 355-60.Google Scholar
Papike, J. J., Prewitt, C. T., Sueno, S., and Cameron, M. (1973) Pyroxenes: comparisons of real and ideal structural topologies. Z. Kristallogr., 138, 254-73.CrossRefGoogle Scholar
Phakey, P. P. and Ghose, S. (1973) Direct observation of anti-phase domain structure in omphacite. Con-trib. Mineral. Petrol, 39, 239-5.CrossRefGoogle Scholar
Philippot, P. (1988) Déformation et éclogitisation progressives d'une croûte océanique subductée; l'ex-ample du Monviso, Alpes occidentales. Contraintes cinematiques durant la collision alpine. Doc. Traveaux Centre Géol. Géophys., 19, 1270. Mont-pellier, France.Google Scholar
Philippot, P. (1990) Opposite vergence of nappes and crustal extension in the French-Italian Alps. Tectonics, 9, 1143-64.CrossRefGoogle Scholar
Råheim, A. and Green, D. H. (1975) Experimental determinations of the temperature and pressure dependence of the Fe-Mg partition coefficient for coexisting garnet and clinopyroxene. Conirib. Mineral. Petrol, 48, 179203.CrossRefGoogle Scholar
Ratterson, P. and Jaoul, O. (1991) High-temperature deformation of diposide single crystals. Part 1. Steady state creep laws. Submitted to J. Geophys. Research. Google Scholar
Rossi, G. (1988) A review of the crystal-chemistry of clinopyroxenes in eclogites and other high-pressure rocks. In Smith D. C. (ed.), Eclogites and eclogite-facies rocks, 237-67.Google Scholar
Rossi, G., Smith, D. C., Ungaretti, L., and Domeneghetti, C. (1983) Crystal-chemistry and cation ordering in the system diopside-jadeite: a detailed study by crystal structure refinement. Contrib. Mineral Petrol. 83, 247-58.CrossRefGoogle Scholar
Van Roermund, H. L. M. (1984) Omphacite micro-structures from a Spanish eclogite. Textures and microstructures, 6, 120-32.CrossRefGoogle Scholar
Van Roermund, H. L. M. and Boland, J. N. (1981) The dislocation substructures of naturally deformed omphacites. Tectonophys., 78, 403-18.CrossRefGoogle Scholar
Vuichard, J. P. (1989) La marge austroalpine durant la collision alpine: évolution tectonométamorphique de la zone Sesia-Lanzo. Memoire et documents du C.A.E.S.S. n° 24, Rennes, 1160.Google Scholar
Vuichard, J. P. and Ballèvre, M. (1986) Garnet-chloritoid equilibria in eclogitic pelitic rocks from the Sesia Zone (Western Alps): their bearing on phase relations in high-pressure metapelites. J. Metamorphic Geol, 6, 135-57.CrossRefGoogle Scholar