Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T11:07:23.220Z Has data issue: false hasContentIssue false

Minor- and trace-element composition of trioctahedral micas: a review

Published online by Cambridge University Press:  05 July 2018

G. Tischendorf
Affiliation:
Bautzner Str. 16, 02763 Zittau, Germany
H.-J. Förster*
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
B. Gottesmann
Affiliation:
GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany
*

Abstract

More than 19,000 analytical data mainly from the literature were used to study statistically the distribution patterns of F and the oxides of minor and trace elements (Ti, Sn, Sc, V, Cr, Ga, Mn, Co, Ni, Zn, Sr, Ba, Rb, Cs) in trioctahedral micas of the system phlogopite-annite/siderophyllite-polylithionite (PASP), which is divided here into seven varieties, whose compositional ranges are defined by the parameter mgli (= octahedral Mg minus Li). Plots of trace-element contents vs. mgli reveal that the elements form distinct groups according to the configuration of their distribution patterns. Substitution of most of these elements was established as a function of mgli. Micas incorporate the elements in different abundances of up to four orders of magnitude between the concentration highs and lows in micas of ‘normal’ composition. Only Zn, Sr and Sc are poorly correlated to mgli. In compositional extremes, some elements (Zn, Mn, Ba, Sr, Cs, Rb) may be enriched by up to 2–3 orders of magnitude relative to their mean abundance in the respective mica variety. Mica/melt partition coefficients calculated for Variscan granites of the German Erzgebirge demonstrate that trace-element partitioning is strongly dependent on the position of the mica in the PASP system, which has to be considered in petrogenetic modelling.

This review indicates that for a number of trace elements, the concentration ranges are poorly known for some of the mica varieties, as they are for particular host rocks (i.e. igneous rocks of A-type affiliation). The study should help to develop optimal analytical strategies and to provide a tool to distinguish between micas of ‘normal’ and ‘abnormal’ trace-element composition.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdalla, H., Matsueda, H., Ishihara, S. and Miura, H. (1994) Mineral chemistry of albite-enriched granitoids at Um Ara, Southeastern Desert, Egypt. Int. Geol. Rev., 36, 1067–77.CrossRefGoogle Scholar
Abdel-Rahman, A.M. (1994) Nature of biotites from alkaline, calc-alkaline, and peraluminous magmas. J. Petrol., 35, 525–41.CrossRefGoogle Scholar
Annersten, H. and Ekström, T. (1971) Distribution of major and minor elements in coexisting minerals from a metamorphosed iron formation. Lithos, 4, 185–204.CrossRefGoogle Scholar
Aoki, , Ken-ichiro, (1974) Phlogopites and potassic richterites from mica nodules in South African kimberlites. Contrib. Mineral. Petrol., 48, 1-7.CrossRefGoogle Scholar
Arima, M. (1988) Barium-rich phlogopite in a mantle derived xenolith of the Upper Canada Mine kimberlite, Ontario, Canada: Implications for Bareservoir in the upper mantle. J. Jap. Ass. Min. Petr. Econ. Geol., 83, 217–31.CrossRefGoogle Scholar
Bagdasarov, Yu.A., Vlasova, E.V. and Skosyreva, M.V. (1985) Typomorphism of the micas of ultrabasicalkaline rocks and carbonatites of the Maymecha-Kotuyskaya province. Izv. Akad. Nauk. SSSR, Ser. geol., No. 6, 78–92 (in Russian).Google Scholar
Bailey, S.W. and Christi, O.H.J. (1978) Three-layer monoclinic lepidolite from Tørdal, Norway. Amer. Mineral., 63, 203–4.Google Scholar
Baldridge, W.S., Carmichael, I.S.E. and Albee, A.L. (1981) Crystallization paths of leucite-bearing lavas: examples from Italy. Contrib. Mineral. Petrol., 76, 321–35.CrossRefGoogle Scholar
Barnett, R.L., Arima, M., Blackwell, J.D., Winder, C.G., Palmer, H.C. and Hayatsu, A. (1984) The Picton and Varty Lake ultramafic dikes: Jurassic magmatism in the St. Lawrence Platform near Belleville, Ontario. Canad. J. Earth Sci., 21, 1460–72.CrossRefGoogle Scholar
Barsukov, V.L. and Pavlenko, L.I. (1956) Distribution of tin in granitoidic rocks. Dokl. Akad. Nauk. SSSR, 109, 589–92 (in Russian).Google Scholar
Bea, F., Pereira, M.D., Corretge, L.G. and Fershtater, G.B. (1994 a) Differentiation of strongly peraluminous, perphosphorus granites: The Pedrobernardo pluton, central Spain. Geochim. Cosmochim. Acta, 58, 2609–27.CrossRefGoogle Scholar
Bea, F., Pereira, M.D. and Stroh, A. (1994 b) Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study). Chem. Geol., 117, 291–312.CrossRefGoogle Scholar
Beard, A.D., Downes, H., Hegner, E., Sablukov, S.M., Vetrin, V.R. and Balogh, K. (1998) Mineralogy and geochemistry of Devonian ultramafic minor intrusions of the southern Kola Peninsula, Russia: implications for the petrogenesis of kimberlites and melilitites. Contrib. Mineral. Petrol., 130, 288–303.CrossRefGoogle Scholar
Bigi, S., Brigatti, M.F., Mazzucchelli, M. and Rivalenti, G. (1993) Crystal chemical variations in Ba-rich biotites from gabbroic rocks of lower crust (Ivrea Zone, NW Italy). Contrib. Mineral. Petrol., 113–99, 87.CrossRefGoogle Scholar
Bilgrami, S.A. (1956) Manganese silicate minerals from Chikla, Bhandara District, India. Mineral. Mag., 31, 236–44.Google Scholar
Birch, W.D. (1978) Mineralogy and geochemistry of the leucitite at Cosgrove, Victoria. J. Geol. Soc. Austral., 25, 369–85.CrossRefGoogle Scholar
Birch, W.D. (1980) Mineralogy of vesicles in an olivine leucitite at Coscrove, Victoria, Australia. Mineral. Mag., 43, 597–603.CrossRefGoogle Scholar
Boctor, N.Z. and Yoder, H.S. Jr. (1986) Petrology of some melilite-bearing rocks from Cape Province, Republic of South Africa: Relationship to kimberlites. Amer. J. Sci., 286, 513–39.CrossRefGoogle Scholar
Boggs, R.C. (1992) A manganese-rich miarolitic granite pegmatite assemblage from the Sawtooth batholith, South central Idaho, U.S.A. Abstracts: Int. Symp. ‘Lepidolite 2000’, Nové Město na Moravě, Czechoslovakia, 29.8–3.9.1992, pp. 15-16.Google Scholar
Bol, L.C.G.M., Bos, A., Sauter, P.C.C. and Jansen, J.B.H. (1989) Barium-titanium-rich phlogopites in marbles from Rogaland, southwest Norway. Amer. Mineral., 74, 439–47.Google Scholar
Brigatti, M.F. and Poppi, L. (1993) Crystal chemistry of Ba-rich trioctahedral micas-1 M. Eur. J. Mineral., 5, 857–71.CrossRefGoogle Scholar
Brigatti, M.F., Galli, E. and Poppi, L. (1991) Effect of Ti substitution in biotite-1M crystal chemistry. Amer. Mineral., 76, 1174–83.Google Scholar
Brigatti, M.F., Medici, L., Saccani, E. and Vaccaro, C. (1996) Crystal chemistry and petrologic significance of Fe3+-rich phlogopite from the Tapira carbonatite complex, Brazil. Amer. Mineral., 81, 913–27.CrossRefGoogle Scholar
Brigatti, M.F., Lugli, C., Poppi, L. and Elburg, M. (1998) Crystal chemistry of biotites from mafic enclaves in the Warburton granodiorite, Lachlan Fold belt (Australia). Eur. J. Mineral., 10, 855–64.CrossRefGoogle Scholar
Bulkin, Yu.S. (1989) Composition of Biotites from Granitoids as Indicators of the Conditions of Rock Formation. Nauka i Tekhnika, Minsk (in Russian).Google Scholar
Cao, R.-L. and Zhu, S.-H. (1987) Mantle xenoliths and alkali-rich host rocks in eastern China. Pp. 167–80 in: Mantle Xenoliths (Nixon, P.H., editor). John Wiley & Sons, Chichester, UK.Google Scholar
Carlier, G., Lorand, J.-P., Audebaud, E. and Kienast, J.-R. (1997) Petrology of an unusual orthopyroxene-bearing minette suite from southeastern Peru, Eastern Andean Cordillera: Al- rich lamproites contaminate d by per aluminous grani tes. J. Volcanol. Geotherm. Res., 75, 59–87.CrossRefGoogle Scholar
Carmichael, I.S.E. (1967) The mineralogy and petrology of the volcanic rocks from the Leucite Hills, Wyoming. Contrib. Mineral. Petrol., 15, 24–66.CrossRefGoogle Scholar
Carmichael, I.S.E., Lange, R.A. and Luhr, J.F. (1996) Quaternary minettes and associated volcanic rocks of Mascota, western Mexico: a consequence of plate extension above a subduction modified mantle wedge. Contrib. Mineral. Petrol., 124, 302–33.CrossRefGoogle Scholar
Černý, p. (1972) Phlogopite, hydrophlogopite, and vermiculite from Heřmanov, Czechoslovakia. Neues. Jahrb. Mineral. Mh., No. 5, 203–9.Google Scholar
Černý, p. and Burt, D.M. (1984) Paragenesis, crystallochemical characteristics, and geochemical evolution of micas in granite pegmatites. Pp. 257–95 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington,CrossRefGoogle Scholar
Černý, p. and Trueman, D.L. (1985) Polylithionite from the rare-metal deposits of the Blachford Lake alkaline complex, N.W.T., Canada. Amer. Mineral., 70, 1127–34.Google Scholar
Černý, p., Meintzer, R.E. and Anderson, A.J. (1985) Extreme fractionation in rare- element granitic pegmatites: selected examples of data and mechanisms. Canad. Mineral., 23, 381-421.Google Scholar
Černý, p., Staněk, J., Novák, M., Baadsgaard, H., Rieder, M., Ottolini, L., Kavaloá, M. and Chapman, R. (1995) Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineral. Petrol., 55, 177–201.CrossRefGoogle Scholar
Chelishchev, N.F., Kapitonova, T.A. and Krachak, A.N. (1974) Mobility of metals in acid decationization of cesium-bearing biotite. Geochimiya, 1420–4 (in Russian).Google Scholar
Chen-Shurong, and Wu-Gongbao, (1987) Mineralogical study of Mn-biotite in miarolitic granite fom Kuiqi, Fujian. Dizhi Lun ping (Geol. Rev.), 33, 222–8 (in Chinese).Google Scholar
Clark, G.S. and Černý, p. (1987) Radiogenic 87Sr, its mobility, and the interpretation of Rb-Sr fractionation trends in rare-element granitic pegmatites. Geochim. Cosmochim. Acta, 51, 1011–8.CrossRefGoogle Scholar
Clarke, M.C.G. and Beddoe-Stephens, B. (1987) Geochemistry, mineralogy and plate tectonic setting of a Late Cretaceous Sn-W granite from Sumatra, Indonesia. Mineral. Mag., 51, 371–87.CrossRefGoogle Scholar
Conticelli, S., Francalanci, L., Manetti, P., Cioni, R. and Sbrana, A. (1997) Petrology and geochemistry of the ultrapotassic rocks from the Sabatini Volcanic District, central Italy: the role of evolutionary processes in the genesis of variably enriched alkaline magmas. J. Volcanol. Geotherm. Res., 75, 107–36.CrossRefGoogle Scholar
Craig, J.R., Sandhaus, D.J. and Guy, R.E. (1985) Pyrophanite MnTiO3 from Sterling Hill, New Jersey. Canad. Mineral., 23, 491–4.Google Scholar
Dasgupta, S., Chakraborti, S., Sengupta, P., Bhattacharya, P.K. and Banerjee, H. (1989) Compositional characteristics of kinoshitalite from the Sausar Group, India. Amer. Mineral., 74, 200–2.Google Scholar
Delaney, J.S., Smith, J.V., Carswell, D.A. and Dawson, J.B. (1980) Chemistry of micas from kimberlites and xenoliths II. Primary- and secondary-textured micas from peridotite xenoliths. Geochim. Cosmochim. Acta, 44, 857–72.CrossRefGoogle Scholar
Dobosi, G. (1987) Geochemistry of biotites from some Tertiary calc-alkaline volcanic rocks of Hungary. Acta Geol. Hungarica, 30, 357–78.Google Scholar
Dodge, F.C.W. and Moore, J.G. (1968) Occurrence and composition of biotites from the Cartridge Pass Pluton of the Sierra Nevada Batholith, California. US Geol. Surv., Prof. Paper, 600-B, 6-10.Google Scholar
Dodge, F.C.W., Smith, V.C. and Mays, R.E. (1969) Biotites from granitic rocks of the Central Sierra Nevada Batholith, California. J. Petrol., 10, 250–71.CrossRefGoogle Scholar
du Bray, E.A. (1994) Compositions of micas in peraluminous granitoids of the eastern Arabian Shield. Implications for petrogenesis and tectonic setting of highly evolved, rare-metal enriched granites. Contrib. Mineral. Petrol., 116, 381–97CrossRefGoogle Scholar
Edgar, A.D. (1992) Barium-rich phlogopite and biotite from some Quaternary alkali mafic lavas, West Eifel, Germany. Eur. J. Mineral, 4, 321–30.CrossRefGoogle Scholar
El Sheshtawi, Y.A., Salem, A.K.A. and Aly, M.M. (1993) The geochemistry of ferrous biotite and petrogenesis of Wadi El-Sheikh granitoid rocks, Southwestern Sinai, Egypt. J. African Earth Sci., 16, 489–98.CrossRefGoogle Scholar
Ewart, A. and Griffin, W.L. (1994) Application of proton-microprobe data to trace-element partitioning in volcanic rocks. Chem. Geol., 117, 251–84.CrossRefGoogle Scholar
Exley, R.A., Sills, J.D. and Smith, J.V. (1982) Geochemistry of micas from the Finero spinellherzolite, Italian Alps. Contrib. Mineral. Petrol., 81, 59–63.CrossRefGoogle Scholar
Filut, M.A., Rule, A.C. and Bailey, S.W. (1985) Crystal structure refinement of anandite-2Or, a barium- and sulfur-bearing trioctahedral mica. Amer. Mineral., 70, 1298–308.Google Scholar
Flower, M.F.J. (1971) Evidence for the role of phlogopite in the genesis of alkali basalts. Contrib. Mineral. Petrol., 32, 126–37.CrossRefGoogle Scholar
Fonteilles, M. (1987) La composition chimique des micas lithinifères (et autres minéraux) des granites d'Échassières comme image de leur évolution magmatique Géol. France., No. 2–3., 149–78.Google Scholar
Foord, E.E., Černý, p., Jackson, L.L., Sherman, D.M. and Eby, R.K. (1995) Mineralogical and geochemical evolution of micas from miarolitic pegmatites of the anorogenic Pikes Peak batholith, Colorado. Mineral. Petrol., 55, 1–26.CrossRefGoogle Scholar
Förster, H.-J., Tischendorf, G., Trumbull, R.B. and Gottesmann, B. (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J. Petrol., 40, 1613–45.CrossRefGoogle Scholar
Foster, M.D. (1960 a) Interpretation of the composition of trioctahedral micas. U.S. Geol. Surv., Prof. Paper, 354-B, 11-49.Google Scholar
Foster, M.D. (1960 b) Interpretation of the composition of lithium micas. U.S. Geol. Surv., Prof. Paper, 354-E, 115–47.Google Scholar
Frietsch, R. (1985) The Lannavaara iron ores, northern Sweden. Sveriges geol. Unders., Ser. C, 807, 1–55.Google Scholar
Frimmel, H.E., Hoffmann, D., Watkins, R.T. and Moore, J.M. (1995) An Fe analogue of kinoshitalite from the Broken Hill massive sulfide deposit in the Namaqualand Metamorphic Complex, South Africa. Amer. Mineral., 80, 833–40.CrossRefGoogle Scholar
Frondel, C. (1968) Crystal chemistry of scandium as a trace element in minerals. Zeits. Kristallogr., 127, 121–38.CrossRefGoogle Scholar
Frondel, C. and Einaudi, M. (1968) Zinc-rich micas from Sterling Hill, New Jersey. Amer. Mineral., 53, 1752–4.Google Scholar
Frondel, C. and Ito, J. (1966) Hendricksite, a new species of mica. Amer. Mineral., 51, 1107–23.Google Scholar
Frondel, C. and Ito, J. (1968) Barium-rich phlogopite from Långban, Sweden. Arkiv Mineral. Geol., 4, 445–7.Google Scholar
Gamaleya, Yu.N. (1968) Polylithionite from granitoids of the Ulkansk pluton and conditions of its formation. Dokl. Akad. Nauk. SSSR, 182, 1186–9 (in Russian).Google Scholar
Gaspar, J.C. and Wyllie, P.J. (1982) Barium phlogopite from the Jacupiranga carbonatite, Brazil. Amer. Mineral., 67, 997-1000.Google Scholar
Gaspar, J.C. and Wyllie, P.J. (1987) The phlogopites from the Jacupiranga carbonatite intrusions. Mineral. Petrol., 36, 121–34.CrossRefGoogle Scholar
Gnos, E. and Armbruster, T. (2000) Kinoshitalite, Ba(Mg)3(Al2Si2)O10(OH,F)2, a brittle mica from a manganese deposit in Oman: Paragenesis and crystal chemistry. Amer. Mineral., 85, 242–50.CrossRefGoogle Scholar
Gordiyenko, V.V. (1973) Cesium in lepidolites as indicator for the cesium potence in granitic pegmatites. Dokl. Akad. Nauk. SSSR, 209, 193–6 (in Russian).Google Scholar
Grapes, R.H. (1993) Barian mica and distribution of barium in metacherts and quartzofeldspathic schists, Southern Alps, New Zealand. Mineral Mag., 57, 265–72.CrossRefGoogle Scholar
Greenwood, J.C. (1998) Barian-titanian micas from Ilha da Trindade, South Atlantic. Mineral. Mag., 62, 687–95.CrossRefGoogle Scholar
Grew, E.S., Chernosky, J.V., Werding, G., Abraham, K., Marquez, N. and Hinthorne, J.R. (1990) Chemistry of kornerupine and associated minerals, a wet chemical, ion microprobe, and X-ray study emphasizing Li, Be, B and F contents. J. Petrol., 31, 1025–70.CrossRefGoogle Scholar
Grew, E.S., Belakovskiy, D.I., Fleet, M.E., Yates, M.G., McGee, J.J. and Marquez, N. (1993) Reedmergnerite and associated minerals from peralkaline pegmatite, Dara-i-Pioz, southern Tien Shan, Tajikistan. Eur. J. Mineral., 5, 971–84.CrossRefGoogle Scholar
Gryazev, V.A., Orlovskiy, V.V., Favorskaya, M.A. and Arakelyants, M.M. (1985) On tin-bearing metasomatites of the Rudnoe ore deposit at the Sikhote Alin western slope. Dokl. Akad. Nauk. SSSR, 283, 1451–54 (in Russian).Google Scholar
Guggenheim, S. and Frimmel, H.E. (1999) Ferrokinoshitalite, a new species of brittle mica from the Broken Hill mine, South Africa: structural and mineralogical characterization. Canad. Mineral., 37, 1445–52.Google Scholar
Guggenheim, S., Schulze, W.A., Harris, G.A. and Lin, J.-C. (1983) Noncentric layer silicates: An optical second harmonic generation, chemical and X-ray study. Clays Clay Miner., 31, 251–60.CrossRefGoogle Scholar
Guidotti, C.V. (1984) Micas in metamorphic rocks. Pp. 357–467 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Gunow, A.J., Ludington, S. and Munoz, J.L (1980) Fluorine in micas from the Henderson molybdenite deposit, Colorado. Econ. Geol., 75, 1127–37.CrossRefGoogle Scholar
Haack, U.K. (1969) Spurenelemente in Biotiten aus Graniten und Gneisen. Contrib. Mineral. Petrol., 22, 83-126.CrossRefGoogle Scholar
Harada, K., Honda, M., Nagashima, K. and Kanisawa, S. (1976) Masutomilite, manganese analogue of zinnwaldite, with special reference to masutomilite-lepidolite- zinnwaldite series. Mineral. J., 8, 95-109.CrossRefGoogle Scholar
Harada, K., Kanisawa, S. and Tomita, K. (1990) Five manganoan zinnwaldites from Japanese pegmatites. Mineral. J., 15, 73-80.CrossRefGoogle Scholar
Hawthorne, F.C. and Černý, P. (1982) The Mica Group. Pp. 63–98 in: Short Course in Granite Pegmatites. Mineralogical Association of Canada, Short Course Handbook, 8.Google Scholar
Hawthorne, F.C., Teertstra, D.K. and Černý, P. (1999) Crystal-structure refinement of a rubidian cesian phlogopite. Amer. Mineral., 84, 778–81.CrossRefGoogle Scholar
Hazen, R.M. and Burnham, C.W. (1973) The crystal structures of one-layer phlogopite and annite. Amer. Mineral., 58, 889-900.Google Scholar
Hazen, R.M. and Wones, D.R. (1972) The effect of cation substitutions on the physical properties of trioctahedral micas. Amer. Mineral., 57, 103–2.Google Scholar
Hazen, R.M., Finger, L.W. and Velde, D. (1981) Crystal structure of a silica- and alkali-rich trioctahedral mica. Amer. Mineral., 66, 586–91.Google Scholar
Heinrich, E.W. (1967) Micas of the Brown Derby pegmatites, Gunnison County, Colorado. Amer. Mineral., 52, 1110–21. 1578.Google Scholar
Henderson, P. (1982) Inorganic Geochemistry. Pergamon, Oxford.Google Scholar
Henderson, C.M.B. and Foland, K.A. (1996) Ba- and Ti-rich primary biotite from the Brome alkaline igneous complex, Monteregian Hills, Quebec: mechanisms of substitution. Canad. Mineral., 34, 1241–52.Google Scholar
Hess, F.L. and Fahey, J.J. (1932) Cesium biotite from Custer County, South Dakota. Amer. Mineral., 17, 173–6.Google Scholar
Hewitt, D.A. and Wones, D.R. (1984) Experimental phase relations of the micas. Pp. 201–56 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Hiroi, Y., Harada-Kondo, H. and Ogo, Y. (1992) Cuprian manganoan phlogopite in highly oxidized Mineoka siliceous schists from Kamogawa, Boso Peninsula, central Japan. Amer. Mineral., 77, 1099–106.Google Scholar
Holm, P.M. (1982) Mineral chemistry of perpotassic lavas of the Vulsinian district, the Roman Province, Italy. Mineral. Mag., 46, 379–86.CrossRefGoogle Scholar
Hunziker, J.C. (1966) Zur Geologie und Geochemie des Gebietes zwischen Valle Antigorio (Provincia di Novara) und Valle di Campo (Kt. Tessin). Schweiz. mineral. petrogr. Mitt., 46, 473-552.Google Scholar
Icenhower, J. and London, D. (1995) An experimental study of element partitioning among biotite, muscovite, and coexisting peraluminous silicic melt at 200 MPa (H2O). Amer. Mineral., 80, 1229–51.CrossRefGoogle Scholar
Ionov, D.A., Griffin, W.L. and O'Reilly, S.Y. (1997) Volatile-bearing minerals and lithophile trace elements in the upper mantle. Chem. Geol., 141, 153–84.CrossRefGoogle Scholar
Irving, A.J. and Frey, F.A. (1984) Trace element abundances in megacrysts and their host basalts: Constraints on partition coefficients and megacryst genesis. Geochim. Cosmochim. Acta, 48, 1201–21.CrossRefGoogle Scholar
Jakob, J. (1925) X. Beiträge zur chemischen Konstitution der Glimmer. I. Mitteilung: Die schwedischen Manganophylle. Zeits. Kristallogr., 61, 155–63.Google Scholar
Jaques, A.L. and Perkin, D.J. (1984) A mica, pyroxene, ilmenite megacryst-bearing lamprophyre from Mt Woolooma, northeastern New South Wales. BMR, J. Austral. Geol. Geophys., 9, 33–40.Google Scholar
Jiang, S.-Y., Palmer, M.R., Li, Y.-H. and Xue, C.-J. (1996) Ba-rich micas from the Yindongzi-Daxigou Pb-Zn-Ag and Fe deposits, Qinling, northwestern China. Mineral. Mag., 60, 433–45.CrossRefGoogle Scholar
Johnston, C. and Chappell, B.W. (1992) Topaz-bearing rocks from Mount Gibson, North Queensland, Australia. Amer. Mineral., 77, 303–13.Google Scholar
Jones, A.P. and Smith, J.V. (1984) Ion probe analysis of H, Li, B, F and Ba in micas, with additional data for metamorphic amphibole, scapolite and pyroxene. Neues. Jahrb. Mineral., Mh., No. 5, 228–40.Google Scholar
Jones, A.P., Kostoula, T., Stoppa, F. and Woolley, A.R. (2000) Petrography and mineral chemistry of mantle xenoliths in a carbonate-rich melilitic tuff from Mt. Vulture volcano, southern Italy. Mineral. Mag., 54, 593–613.CrossRefGoogle Scholar
Kazachenko, V.T., Sapin, V.I., Narnov, G.A., Yudina, G.A. and Barinov, N.N. (1988) Manganous barium-rich phlogopite from Shirokopadninskoye deposit in Primorye, U.S.S.R. Neues. Jahrb. Mineral., Mh., No. 2, 49–66.Google Scholar
Khvostova, V.A., Laputina, I.P. and Peterson, M.R. (1973) Discovery of Cs biotite in the USSR. Izv. Akad. Nauk. SSSR, Ser. geol., 1, 142–6 (in Russian).Google Scholar
Knurr, R.A. and Bailey, S.W. (1986) Refinement of Mn-substituted muscovite and phlogopite. Clays Clay Miner., 34, 7–16.CrossRefGoogle Scholar
Kol'tsov, A.B. and Rusinova, O.V. (1997) Quartzbiotite-K-feldspar metasomatites of Muruntau: genesis and a formation model. Petrology, 5, 74-82.Google Scholar
Kramer, W. and Seifert, W. (1994) Mica-lamprophyres and related volcanics of the Erzgebirge and their metallogenic significance. Pp. 159–65 in: Metallogeny of Collisional Orogens (Seltmann, R., Kämpf, H. and Möller, P., editors). Czech Geological Survey, Prague.Google Scholar
Krivdik, S.G., Glevasskiy, E.B. and Levina, R.L. (1982) About the composition of Mg-Fe micas of the carbonatite complex from Chernigov. Mineral. Zhurn., 4, 78-85 (in Russian).Google Scholar
Kullerud, K. (1995) Chlorine, titanium and barium-rich biotites: factors controlling biotite composition and the implications for garnet-biotite geothermometry. Contrib. Mineral. Petrol., 120, 42-59.CrossRefGoogle Scholar
Kuznetsova, L.G. and Zagorskiy, V.E. (1984) The micas of the metasomatic rocks in the rare-metal province of a spodumen pegmatite. Dokl. Akad. Nauk. SSSR, 275, 151–5 (in Russian).Google Scholar
Kwak, T.A.P. (1968) Ti in biotite and muscovite as an indication of metamorphic grade in almandine amphibolite facies rocks from Sudbury, Ontario. Geochim. Cosmochim. Acta, 32, 1222–9.CrossRefGoogle Scholar
Lagache, M. and Quéméneur, J. (1997) The Volta Grande pegmatites, Minas Gerais, Brazil: an example of rare- element granitic pegmatites exceptionally enriched in lithium and rubidium. Canad. Mineral., 35, 153–65.Google Scholar
Lalonde, A.E. and Martin, R.F. (1983) The Baie-des- Moutons syenitic complex, La Tabatière, Québec II. The ferromagnesian minerals. Canad. Mineral., 21, 81–91.Google Scholar
Lalonde, A.E., Rancourt, D.G. and Chao, G.Y. (1996) Fe-bearing trioctahedral micas from Mont Saint-Hilaire, Québec, Canada. Mineral. Mag., 60, 447–60.CrossRefGoogle Scholar
Lapides, I.L., Kovalenko, V.I. and Koval', P.V. (1977) The Micas of Rare-Metal Granitoids. Nauka, Novosibirsk (in Russian).Google Scholar
Lee, D.E., Kistler, R.W., Friedman, I. and van Loenen, R.E. (1981) Two-mica granites of northeastern Nevada. J. Geoph. Res., B86, 10607–16.CrossRefGoogle Scholar
Lehmann, B. (1982) Metallogeny of tin: magmatic differentiation versus geochemical heritage. Econ. Geol., 77, 50–59.CrossRefGoogle Scholar
Lehmann, B. (1990) Metallogeny of Tin. Springer, Berlin/Heidelberg/New York.Google Scholar
Lentz, D. (1992) Petrogenesis and geochemical composition of biotites in rare-element granitic pegmatites in the southwestern Grenville Province, Canada. Mineral. Petrol., 46, 239–56.CrossRefGoogle Scholar
Lovering, F.J. and Widdowson, J.R. (1968) Electron-microprobe analysis of anandite. Mineral. Mag., 36, 871–4.Google Scholar
Lowell, G.R. and Ahl, M. (2000) Chemistry of dark zinnwaldite from Bom Futuro tin mine, Rondônia, Brazil. Mineral. Mag., 64, 699–709.CrossRefGoogle Scholar
Lyakhovich, V.V. and Lyakhovich, T.T. (1987) Geochemical peculiarities of biotites. Geochimiya, 3, 339–49 (in Russian).Google Scholar
Mahood, G. and Hildreth, W. (1983) Large partitioning coefficien ts for trace elements in high-silica rhyolites. Geochim. Cosmochim. Acta, 47, 11–30.CrossRefGoogle Scholar
Malyshonok, Yu.V. (1989) Peculiarities of the chemical composition of micas from the Murun Massif (Russ.). Mineral. Zhurn., 11, 38-52.Google Scholar
Mansker, W.L., Ewing, R.C. and Keil, K. (1979) Barian-titanian biotites in nephelinites from Oahu, Hawaii. Amer. Mineral., 64, 156–9.Google Scholar
Maslov, V.I., Kozlov, M.S., Dovgal, V.N. and Distanova, A.N. (1994) Ongonite and LiF granite complex of the southwestern Altai. Petrology, 2, 288–92.Google Scholar
Mason, R.A. (1992) Models of order and iron-fluorine avoidance in biotite. Canad. Mineral., 30, 343–54.Google Scholar
Matsubara, S., Kato, A., Nagashima, K. and Matsuo, G. (1974) Kinoshitalite from Hokkejino, Kyoto Prefecture. Abstr. Autumn Meet. Jap. Assoc. Petrol. Mineral. Econ. Geol., Mineral. Soc. Japan, and Soc. Mining Geol. Japan, Yamaguchi, 26.Google Scholar
Mitchell, R.H. (1972) Composition of nepheline, pyroxene and biotite in ijolite from the Seabrook Lake complex, Ontario, Canada. Neues. Jahrb. Mineral., Mh., No. 9, 415–22.Google Scholar
Mitchell, R.H. (1981) Titaniferous phlogopites from the leucite lamproites of the West Kimberley Area, Western Australia. Contrib. Mineral. Petrol., 76, 243–51.CrossRefGoogle Scholar
Mitchell, R.H. (1985) A review of the mineralogy of lamproites. Trans. Geol. Soc. South Afr., 88, 411–37.Google Scholar
Mitchell, R.H., Platt, R.G. and Downey, M. (1987) Petrology of lamproites from Smoky Butte, Montana. J. Petrol., 28, 645–77.CrossRefGoogle Scholar
Mohamed, F.H., Abdalla, H.M. and Helba, H. (1999) Chemistry of micas in rare-metal granitoids and associated rocks, Eastern Desert, Egypt. Int. Geol. Rev., 41, 932–48.CrossRefGoogle Scholar
Moloshag, V.P. and Teremetskaya, A.G. (1975) Cs biotites from wall rocks in one of the fields with rare-metal pegmatites. Dokl. Akad. Nauk. SSSR, 221, 187–90 (in Russian).Google Scholar
Morgan, G.B. VI and London, D. (1987) Alteration of amphibolitic wallrocks around the Tanco rare-element pegmatite, Bernic Lake, Manitoba. Amer. Mineral., 72, 1097–121.Google Scholar
Mues-Schumacher, U., Keller, J., Konova, V. and Suddaby, P. (1995) Petrology and age determinations of the ultramafic (lamproitic) rocks from the Yakokut complex, Aldan Shield, Eastern Sibiria. Mineral. Mag., 59, 409–28.CrossRefGoogle Scholar
Munoz, J.L. (1984) F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits. Pp. 469–93 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Nachit, H., Razafimahefa, N., Stussi, J.-M. and Carron, J.-P. (1985) Composition chimique des biotites et typologie magmatique des granitoids. Compt. Rend. Acad. Sci., SJr. II, 301, 813–8.Google Scholar
Nash, W.P. (1993) Fluorine iron biotite from the Honeycomb Hills rhyolite, Utah: The halogen record of decompression in a silicic magma. Amer. Mineral., 78, 1031–40.Google Scholar
Nash, W.P. and Crecraft, H.R. (1985) Partition coefficients for trace elements in silicic magmas. Geochim. Cosmochim. Acta, 49, 2309–22.CrossRefGoogle Scholar
Neiva, A.M.R. (1976) The geochemistry of biotites from granites of northern Portugal with special reference to their tin content. Mineral. Mag., 40, 453–66.CrossRefGoogle Scholar
Neiva, A.M.R. (1980) Chlorite and biotite from contact metamorphism of phyllite and metagraywacke by granite, aplite-pegmatite and quartz veins. Chem. Geol., 29, 49–71.CrossRefGoogle Scholar
Neiva, A.M.R. (1981 a) Geochemistry of hybrid granitoid rocks and of their biotites from central northern Portugal and their petrogenesis. Lithos, 14, 149–63.CrossRefGoogle Scholar
Neiva, A.M.R. (1981 b) Geochemistry of chlorite and biotite from contact metamorphism of phyllite by granites. Mem. e Noticias, Publ. Lab. Mineral., Geol., Univ. Coimbra, 91/92, 113–34.Google Scholar
Neiva, A.M.R. (1993) Geochemistry of granites and their minerals from Gerez Mountain, Northern Portugal. Chem. Erde, 53, 227–58.Google Scholar
Neiva, A.M.R. and Gomes, M.E.P. (1991) Geochemistry of the granitoid rocks and their minerals from Lixa do Alvno-Alfarela de Jales-Tourencinho (Vila Pouca de Aguiar, northern Portugal). Chem. Geol., 89, 305–27.CrossRefGoogle Scholar
Neiva, A.M.R., Neiva, J.M.C. and Parry, S.J. (1987) Geochemistry of the granitic rocks and their minerals from Serra da Estrela, Central Portugal. Geochim. Cosmochim. Acta, 51, 439–54.CrossRefGoogle Scholar
Němec, D. (1969) Glimmer der regionalmetamorphen Skarne Westmährens. Tscherm. Miner. Petrogr. Mitt., 13, 55-84.CrossRefGoogle Scholar
Němec, D. (1983) Masutomilite in lithium pegmatites of West-Moravia, Czechoslova kia. Neues. Jahrb. Mineral., Mh., No. 12, 537–40.Google Scholar
Němec, D. (1990) Chemical composition of white micas of the West-Moravian pegmatites. Acta Mus. Moraviae, Sci. nat., Brno, 74, 41-51.Google Scholar
Němec, D. and Povondra, P. (1993) Chemical composition of lepidolite and the acidity-alkalinity of its pegmatite medium. Scripta Fac. Sci. Nat. Univ. Masaryk. Brunensis, Geology, 23, 45–53.Google Scholar
Neves, L.J.P.F. (1993) Variabilidade geoquímica de biotites e moscovites das rochas granitöides da região de Torredeita (Viseu, Portugal Central) - Um modelu factorial explicativo. Memórias e Notícias, Publ. Mus. Lab. Mineral. Geol., Univ. Coimbra, 116, 1–20.Google Scholar
Novák, M. and Povondra, P. (1995) Elbaite pegmatites in the Modanubicum: a new subtype of the rare-element class. Mineral. Petrol., 55, 159–76.CrossRefGoogle Scholar
Oen, I.S. and Lustenhouwer, W.J. (1992) Cl-rich biotite, Cl-K hornblende, and Cl-rich scapolite in metaexhalites: Nora, Bergslagen, Sweden. Econ. Geol., 87, 1638–48.CrossRefGoogle Scholar
Orliac, M., Monchoux, P. and Besson, M. (1971) Un lépidomélane à forte teneur en baryum. Bull. Soc. fr. Minéral. Cristallogr., 94, 500–6.CrossRefGoogle Scholar
Pan, Y. and Breaks, F.W. (1997) Rare-earth elements in fluorapatite, Separation Lake Area, Ontario: evidence for S-type granite rare-element pegmatite linkage. Canad. Mineral., 35, 659–71.Google Scholar
Papin, A. and Robert, J.-L. (2000) Mn and Zn in synthetic micas under different oxygen fugacities. J. Conf. Abstr., 5, 81.Google Scholar
Papin, A., Sergent, J. and Robert, J.-L. (1997) Intersite OH-F distribution in an Al-rich synthetic phlogopite. Eur. J. Mineral., 9, 501–8.CrossRefGoogle Scholar
Pattiaratchi, D.B., Saari, E. and Sahama, T.G. (1967) Anandite, a new barium iron silicate from Wilagedera, North Western Province, Ceylon. Mineral. Mag., 36, 1–4.Google Scholar
Pesquera, A., Torres-Ruiz, J., Gil-Crespo, P.P. and Velilla, N. (1999) Chemistry and genetic implications of tourmaline and Li-F-Cs micas from the Valdeflores area (Cáceres, Spain). Amer. Mineral., 84, 55-69.CrossRefGoogle Scholar
Pomârleanu, V., Udubaşa, G. and Neagu, E. (1986) Magnesian skarns from Tibleş: Mineralogic and geochemical data. I. Fluorphlogopite. D. S. Inst. Geol. Geofiz., 70–71., 41-51.Google Scholar
Raade, G. and Larsen, A.O. (1980) Polylithionite from syenite pegmatite at Vøra, Sandefjord, Oslo Region, Norway. Contributions to the mineralogy of Norway, No. 65. Norsk geol. Tidsskr., 60, 117–24.Google Scholar
Raimbault, L., Cuney, M., Azencott, C., Duthou, J.L. and Joron, J.L. (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauviour, French Massif Central. Econ. Geol., 90, 548–76.CrossRefGoogle Scholar
Rieder, M., Cavazzini, G., D'yakonov, Yu.S., Frank-Kamenetskii, V.A., Gottardi, G., Guggenheim, S., Koval', P.V., Müller, G., Neiva, A.M.R., Radoslovich, E.W., Robert, J.-L., Sassi, F.P., Takeda, H., Weiss, Z. and Wones, D.R. (1999) Nomenclature of the micas. Mineral. Mag., 63, 267–79.CrossRefGoogle Scholar
Rimšaite, J. (1970) Anionic and cationic variations in zoned phlogopite. Contrib. Mineral. Petrol., 29, 186–94.CrossRefGoogle Scholar
Rimšaite, J. (1971) Distribution of major and minor constituents between mica and host ultrabasic rocks, and between zoned mica and zoned spinel. Contrib. Mineral. Petrol., 33, 259–72.CrossRefGoogle Scholar
Rimšaite, J. and Lachance, G.R. (1966) Illustrations of heterogeneity in phlogopite, feldspar, euxenite and associated minerals. Mineral. Soc. India, IMA Vol., 209–29.Google Scholar
Rinaldi, R., Černý, P. and Ferguson, R.B. (1972) The Tanco pegmatite at Bernic Lake, Manitoba. VI. Lithium-rubidium-cesium micas. Canad. Mineral., 11, 690–707.Google Scholar
Robert, J.-L. and Maury, R.C. (1979) Natural occurrence of a (Fe, Mn, Mg) tetrasilicic potassium mica. Contrib. Mineral. Petrol., 68, 117–23.CrossRefGoogle Scholar
Rock, N.M.S. (1991) Lamprophyres. Blackie & Son, Glasgow.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995) Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineral. Petrol., 55, 145–57.CrossRefGoogle Scholar
Rötzler, K., Schumacher, R., Maresch, W.V. and Willner, A.P. (1998) Characterization and geodynamic implications of contrasting metamorphic evolution in juxtaposed high-pressure units of the Western Erzgebirge (Saxony, Germany). Eur. J. Mineral., 10, 261–80.CrossRefGoogle Scholar
Ryabchikov, I.D., Kovalenko, V.I., Dikov, Yu.V. and Vladykin, N.V. (1981) Titanium- bearing mantle micas: composition, structure, formation conditions and possible role in the genesis of potassic alkaline magmas. Geochimiya, 6, 873–88 (in Russian).Google Scholar
Schneiderman, J.S. (1991) Petrology and mineral chemistry of the Ascutney Mountain igneous complex. Amer. Mineral., 76, 218–29.Google Scholar
Schödlbauer, S., Hecht, L., Höhndorf, A. and Morteani, G. (1996) Gesteinseinschlüsse in den peraluminösen Kösseinegraniten (Fichtelgebirge, NE Bayern). Geologica Bavarica, 101, 113–37.Google Scholar
Schulze, D.J., Smith, J.V. and Němec, D. (1985) Mica chemistry of lamprophyres from the Bohemian Massif, Czechoslovaki. Neues. Jahrb. Mineral., Abh., 152, 321–34.Google Scholar
Scott Smith, B.H. and Skinner, E.M.W. (1984) A new look at Prairie Creek, Arkansas. Pp. 255–83 in: Kimberlites I: Kimberlites and Related Rocks (Kornprobst, J., editor). Developments in Petrology, 11. Elsevier, Amsterdam.CrossRefGoogle Scholar
Seifert, W. and Kämpf, H. (1994) Ba-enrichment in phlogopite of a nephelinite from Bohemia. Eur. J. Mineral., 6, 497–502.CrossRefGoogle Scholar
Semenov, E.I. (1972) Mineralogy of the Alkaline Massif from Lovozero. Nauka, Moscow (in Russian).Google Scholar
Semenov, E.I. and Shmakin, B.M. (1988) On the composition of mica rocks in exocontacts of raremetal pegmatites from the Bastar area (India). Dokl. Akad. Nauk. SSSR, 303, 199–202 (in Russian).Google Scholar
Semenov, E.I., Es'kova, E.M., Kapustin, Yu.L. and Khomyakov, A.P. (1974) Mineralogy of Alkaline Massifs and their Ore Deposits. Nauka, Moscow (in Russian).Google Scholar
Semka, V.O., Nechayev, S.V. and Maksimchuk, I.G. (1989) Barium-rich phlogopite from the Precambrian skarns of the Ukrainian Shield. Dokl. Akad. Nauk. Ukrain. SSR, Ser. B, 2, 22–5 (in Russian).Google Scholar
Shaw, C.S.J. and Penczak, R.S. (1996) Barium- and titanium-rich biotite and phlogopite from the western and eastern gabbro, Coldwell alkaline complex, northwestern Ontario. Canad. Mineral., 34, 967–75.Google Scholar
Shearer, C.K., Papike, J.J., Simon, S.B. and Laul, J.C. (1986) Pegmatite-wallrock interactions, Black Hills, South Dakota: Interaction between pegmatitederived fluids and quartz-mica schist wallrock. Amer. Mineral., 71, 518–39.Google Scholar
Sheraton, J.W. and Cundari, A. (1980) Leucitites from Gaussberg, Antarctica. Contrib. Mineral. Petrol., 71, 417–27.CrossRefGoogle Scholar
Silva, M.M.V.G. and Neiva, A.M.R. (1990) Geochemistry of the granites and their minerals from Paredes da Beira-Penedono, northern Portugal. Chem. Geol., 85, 147–70.CrossRefGoogle Scholar
Sklavounos, S., Kassoli-Fournaraki, A. and Michailidis, K. (1986) On a Mn-rich biotite from a granitic rock (Paranesti, North Greece). Geochem., Mineral. Petrol. (Sofia), 22, 48-53.Google Scholar
Skosyreva, M.V. and Vlasova, E.V. (1983) First occurrence of polylithionite from rare-metal granite pegmatites. Dokl. Akad. Nauk. SSSR, 272, 694–7 (in Russian).Google Scholar
Skosyreva, M.V. and Vlasova, E.V. (1989) New data on rubidium lepidolite. Dokl. Akad. Nauk. SSSR, 306, 1455–9 (in Russian).Google Scholar
Smith, D. and Albee, A.L. (1967) Petrology of a piemontite-bearing gneiss, San Gorgonio Pass, California. Contrib. Mineral. Petrol., 16, 189-203.CrossRefGoogle Scholar
Smith, G., Hålenius, U., Annersten, H. and Ackermann, L. (1983) Optical and Mössbauer spectra of manganese-bearing phlogopites; Fe3+ IV-Mn2+ VI pair absorption as the origin of reverse pleochroism. Amer. Mineral., 68, 759–68.Google Scholar
Smith, J.V., Brennesholtz, R. and Dawson, J.B. (1978) Chemistry of micas from kimberlites and xenoliths I. Micaceous kimberlites. Geochim. Cosmochim. Acta, 42, 959–71.CrossRefGoogle Scholar
Sobachenko, V.N., Matveyeva, L.N. and Khaltuyeva, V.K. (1989) The evolution of mica composition in granitization and near-fracture metasomatic processes in Precambrian trough structures. Geol. i Geofiz., 12, 73–81 (in Russian).Google Scholar
Solie, D.N. and Su, S.-Ch. (1987) An occurrence of Ba-rich micas from the Alaska Range. Amer. Mineral., 72, 995–9.Google Scholar
Speer, J.A. (1984) Micas in igneous rocks. Pp. 299–356 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, D.C. CrossRefGoogle Scholar
Speer, J.A. and Becker, S.W. (1992) Evolution of magmatic and subsolidus AFM mineral assemblages in granitoid rocks: Biotite, muscovite, and garnet in the Cuffytown Creek pluton, South Carolina. Amer. Mineral., 77, 821–33.Google Scholar
Stern, L.A., Brown, G.E. Jr., Bird, D.K., Jahns, R.H., Foord, E.E., Shigley, J.E. and Spaulding, L.B. Jr. (1986) Mineralogy and geochemical evolution of the Little Tree pegmatite- aplite layered intrusive, Ramona, California. Amer. Mineral., 71, 406–27.Google Scholar
Stern, W. B. (1966) Zur Mineralchemie von Glimmern aus Tessiner Pegmatiten. Schweiz. Mineral. Petrogr. Mitt., 46, 137–88.Google Scholar
Stevens, R.E. (1938) New analyses of lepidolites and their interpretation. Amer. Mineral., 23, 607–28.Google Scholar
Stimac, J.A., Clark, A.H., Chen, Y. and Garcia, S. (1995) Enclaves and their bearing on the origin of the Cornubian batholith, southwest England. Mineral. Mag., 59, 273–96.CrossRefGoogle Scholar
Stone, M., Exley, C.S. and George, M.C. (1998) Composition of trioct ahedra l micas in the Cornubian batholith. Mineral. Mag., 62, 175–92.Google Scholar
Stoppa, F., Sharygin, V.V. and Cundari, A. (1997) New mineral data from the kamafugite-carbonatite association: the melilitolite from Pian di Celle, Italy. Mineral. Petrol., 61, 27–45.CrossRefGoogle Scholar
Szabo, C., Bodnar, R.J. and Sobolev, A.V. (1996) Metasomatism associated with subduction-related, volatile- rich silicate melt in the upper mantle beneath the N\gr<d-Gömör Volcanic Field, Northern Hungary/Southern Slovakia: evidence from silicate melt inclusions. Eur. J. Mineral., 8, 881–99.CrossRefGoogle Scholar
Thompson, R.N. (1977) Primary basalts and magma genesis. III. Alban Hills, Roman comagmatic province, Central Italy. Contrib. Mineral. Petrol., 60, 91-108.CrossRefGoogle Scholar
Tischendorf, G. (1977) Geochemical and petrographic characteristics of silicic magmatic rocks associated with rare-element mineralization. Pp. 41–96 in. Metallization Associated with Acid Magmatism, Vol. 2 (Štemprok, M., Burnol, L. and Tischendorf, G., editors). Czech Geological Survey, Prague.Google Scholar
Tischendorf, G., Gottesmann, B., Förster, H.-J. and Trumbull, R.B. (1997) On Li-bearing micas: estimating Li from electron microprobe analyses and an improved diagram for graphical representation. Mineral. Mag., 61, 809–34.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-J. and Gottesmann, B. (1999 a) The correlation between lithium and magnesium in trioctahedral micas: Improved equations for Li2O estimation from MgO data. Mineral. Mag., 63, 57-74.CrossRefGoogle Scholar
Tischendorf, G., Förster, H.-J. and Gottesmann, B. (1999 b) Tri- und dioktaedri sche Glimmer in Granitoiden aus dem Osten Deutschlands – Historie ihrer Untersuchung und neue Forschungsergebnisse. Zeits. Geol. Wiss., 27, 427–42.Google Scholar
Tracy, R.J. (1991) Ba-rich micas from the Franklin Marble, Lime Crest and Sterling Hill, New Jersey. Amer. Mineral., 76, 1683–93.Google Scholar
Ukai, Y., Nishimura, S. and Hashimoto, Y. (1956) Chemical studies of lithium micas from the pegmatite of Minagi, Okayama Prefecture. Mineral. J., 2, 27–38.CrossRefGoogle Scholar
Ushakova, E.N. (1971) Biotites from Metamorphic Rocks. Trudy Instituta Geologii i Geofiziki, 87, Moscow (in Russian).Google Scholar
Ushakova, E.N. (1980) Biotites from Magmatic Rocks. Trudy Instituta Geologii i Geofiziki, 454, Novosibirsk (in Russian).Google Scholar
Valley, J.W., Petersen, E.U., Essene, E.J. and Bowman, J.R. (1982) Fluorphlogopite and fluortremolite in Adirondack marbles and calculated C-O-H-F fluid compositions. Amer. Mineral., 67, 545–57.Google Scholar
van Middelaar, W.T. and Keith, J.D. (1990) Mica chemistry as an indicator of oxygen and halogen fugacities in the CanTung and other W-related granitoids in the North American Cordillera. Geol. Soc. Amer., Spec. Pap., 246, 205–20.Google Scholar
Velde, D. (1975) Armalcolite-Ti-phlogopite-diopside - analcite-bearing lamproites from Smoky Butte, Garfield County, Montana. Amer. Mineral., 60, 566–73.Google Scholar
Velde, D. (1979) Trioctahedral micas in melilite-bearing eruptive rocks. Carnegie Inst. Washington Yearbook, 78, 468–75.Google Scholar
Vlasov, K.A. (editor) (1964) Geochemistry, Mineralogy and Genetic Types of Rare Element Deposits. Part 2: Mineralogy of Rare Elements. Nauka, Moscow (in Russian).Google Scholar
Vlasov, K.A., Kuz'menko, M.V. and Es'kova, E.M. (1959) The Lovozero Alkaline Massif. Akad. Nauk. SSSR, Moscow (in Russian).Google Scholar
Wagner, C., Velde, D. and Mokhtari, A. (1987) Sectorzoned phlogopites in igneous rocks. Contrib. Mineral. Petrol., 96, 186–91.CrossRefGoogle Scholar
Wendlandt, R.F. (1977) Barium-phlogopite from Haystack Butte, Highwood Mountains, Montana. Carnegie Inst. Washington, Yearbook, 76, 534–9.Google Scholar
Wiese, R.G. Jr., Edgar, A.D. and Barnett, R.L. (1996) Textural and compositional variations in phlogopite and biotite in kimberlite from Fayette County, Pennsylvania: a documentation of possible evolution of kimberlite magma. Neues. Jahrb. Mineral., Abh., 170, 111–26.Google Scholar
Wise, M.A. (1995) Trace element chemistry of lithium-rich micas from rare-element granitic pegmatites. Mineral. Petrol., 55, 203–15.CrossRefGoogle Scholar
Yang, P. and Rivers, T. (2000) Trace element partitioning between coexisting biotite and muscovite from metamorphic rocks, Western Labrador: Structural, compositional and thermic controls. Geochim. Cosmochim. Acta, 64, 1451–72.CrossRefGoogle Scholar
Yoshii, M. and Maeda, K. (1975) Relations between barium content and the physical and optical properties in the manganoan phlogopite-kinoshitalite series. Mineral. J., 8, 58–65.CrossRefGoogle Scholar
Yoshii, M., Togashi, Y. and Maeda, K. (1973 a) On the intensity changes of basal reflections with relation to barium content in manganoan phlogopites and kinoshitalite. Bull. Geol. Surv. Japan, 24, 543–50.Google Scholar
Yoshii, M., Maeda, K., Kato, T., Watanabe, T., Yui, S., Kato, A. and Nagashima, K. (1973 b) Kinoshitalite, a new mineral from the Noda-Tamagawa mine, Iwate Prefecture (in Japanese). Chigaku Kenkyu (Geosc. Mag.), 24, 181–90.Google Scholar
Zagorskiy, V.E. and Makrygin, A.I. (1976) The evolution of the mica composition at the exocontacts of Ta-bearing pegmatites. Geochimiya, 9, 1362–9 (in Russian).Google Scholar
Zaritskiy, A.I., Kirikilitsa, S.I., Labuznyy, V.F., Marchenko, E.Ya., Metalidi, S.V., Potebnya, M.T. and Slysh, R.A. (1983) Cesium biotite from a new field of microcline-albite pegmatites. Mineral. Zhurn., 5, 83–5 (in Russian).Google Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993 a) Barian titanian phlogopite from potassic lavas in northeast China: Chemistry, substitutions, and paragenesis. Amer. Mineral., 78, 1056–65.Google Scholar
Zhang, M., Suddaby, P., Thompson, R.N. and Dungan, M.A. (1993 b) The origins of contrasting zoning patterns in hyalophane from olivine leucitites, Northeast China. Mineral. Mag., 57, 565–73.CrossRefGoogle Scholar
Zhu, C., Xu, H., Ilton, E.S., Veblen, D.R., Henry, D.J., Tivey., M.K. and Thompson, G. (1994) TEM-AEM observations of Cl-rich amphibole and biotite and possible petrologic implications. Amer. Mineral., 79, 909–20.Google Scholar