Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T07:55:24.120Z Has data issue: false hasContentIssue false

Mineralogy and magmatic affinity of the Jasra intrusive complex, Shillong Plateau, India

Published online by Cambridge University Press:  05 July 2018

L. Melluso*
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Napoli Federico II, Napoli, Italy
R. K. Srivastava
Affiliation:
Department of Geology, Banaras Hindu University, Varanasi, India
C. M. Petrone
Affiliation:
Department of Earth Sciences, Cambridge University, Cambridge, UK
V. Guarino
Affiliation:
Dipartimento di Scienze della Terra, Universitá di Napoli Federico II, Napoli, Italy
A. K. Sinha
Affiliation:
Department of Geology, Banaras Hindu University, Varanasi, India
*

Abstract

The rocks of the Jasra intrusive complex (Shillong Plateau, northeastern India) include phlogopite clinopyroxenites (with olivine or perovskite relics), alkali gabbros/monzodiorites, syenites and nepheline syenites. They have a potassic affinity (Na2O/K2O ∼1), and their mineralogy is dominated by clinopyroxene with which phlogopite, olivine, amphibole, feldspars, feldspathoids, oxides, orthopyroxenes, perovskite, titanite and other accessory phases are variably associated. The Jasra intrusive rocks are cumulates derived from at least two distinct magmatic liquids. The potassic affinity of the Jasra rocks differs from the nearby Sung Valley ijolitic-carbonatitic complex and from the ultrapotassic lamproitic rocks of the Damodar Valley, which are of approximately the same age. This suggests major variability in the mantle sources of small-volume alkaline volcanism in the Early Cretaceous of northeastern India.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK

Present address: Dr K.S. Krishnan Geomagnetic Research Laboratory, Jhusi, Allahabad 211505, India

References

Andronikov, A.V. and Foley, S.F. (2001) Trace element and Nd-Sr isotopic composition of ultramafic lamprophyres from the East Antarctic Beaver Lake area. Chemical Geology, 175, 291305.CrossRefGoogle Scholar
Baksi, A.J. (1995) Petrogenesis and timing of volcanism in the Rajmahal flood basalt province, northeastern India. Chemical Geology, 121, 7390.CrossRefGoogle Scholar
Barker, D.S. (2001) Calculated silica activities in carbonatitic liquids. Contributions to Mineralogy and Petrology, 141, 704709.CrossRefGoogle Scholar
Bell, K. and Simonetti, A. (2010) Source of parental melts to carbonatites - critical isotopic constraints. Mineralogy and Petrology, 98, 7789.CrossRefGoogle Scholar
Blancher, S.B., D’Arco, P., Fonteilles, M. and Pascal, M.-L. (2010) Evolution of nepheline from mafic to highly differentiated members of the alkaline series: the Messum complex, Namibia. Mineralogical Magazine, 74, 415432.CrossRefGoogle Scholar
Brotzu, P., Barbieri, M., Beccaluva, L., Garbarino, C., Gomes, C.B., Macciotta, G., Melluso, L., Morbidelli, L., Ruberti, E., Sigolo, J.B. and Traversa, G. (1992) Petrology and geochemistry of the Passa Quatro alkaline complex (southeastern Brazil). Journal of South American Earth Sciences, 6, 237252.CrossRefGoogle Scholar
Brotzu, P., Gomes, C.B., Melluso, L., Morbidelli, L., Morra, V. and Ruberti, E. (1997) Petrogenesis of coexisting SiO2-undersaturated to SiO2-oversaturated felsic igneous rocks: the alkaline complex of Itatiaia, southeastern Brazil. Lithos, 40, 133156.CrossRefGoogle Scholar
Brotzu, P., Melluso, L., Bennio, L., Gomes, C.B., Lustrino, M., Morbidelli, L., Morra, V., Ruberti, E., Tassinari, C.C.G. and D’Antonio, M. (2007) Petrogenesis of the Cenozoic potassic alkaline complex of Morro de Sa˜o Joa˜o, southeastern Brazil. Journal of South American Earth Sciences, 24, 93115.CrossRefGoogle Scholar
Chakhmouradian, A.R. and Mitchell, R.H. (1998) Compositional variation of perovskite-group minerals from the Khibina complex, Kola peninsula, Russia. The Canadian Mineralogist, 36, 953969.Google Scholar
Chatterjee, N., Bhattacharya, A., Duarah, B.P. and Mazumdar, A.C. (2011) Late Cambrian reworking of Paleo-Mesoproterozoic granulites in Shillong- Meghalaya gneissic complex (Northeast India): evidence from PT pseudosection analysis and monazite chronology and implications for East Gondwana assembly. Journal of Geology, 119, 311330.CrossRefGoogle Scholar
Coffin, M.F., Pringle, M.S., Duncan, R.A., Gladczenko, T.P., Storey, M., Müller, R.D. and Gahagan, L.A. (2002) Kerguelen hotspot magma output since 130 Ma. Journal of Petrology, 43, 11211139.CrossRefGoogle Scholar
Cucciniello, C., Melluso, L., Morra, V., Storey, M., Rocco, I., Franciosi, L., Grifa, C., Petrone, C.M. and Vincent, M. (2011) New 39Ar-40Ar ages and petrogenesis of the Massif d’Ambre volcano, northern Madagascar. Pp. 257–282 in: Volcanism and Evolution of the African Lithosphere (L. Beccaluva G. Bianchini, and M. Wilson, editors). Geological Society of America Special Papers, 479 Geological Society of America, Boulder, Colorado, USA.CrossRefGoogle Scholar
Dawson, J.B., Smith, J.V. and Steele, I.M. (1995) Petrology and mineral chemistry of plutonic igneous xenoliths from the carbonatite volcano, Oldoynio Lengai, Tanzania. Journal of Petrology, 36, 797826.CrossRefGoogle Scholar
De La Roche, H., Leterrier, P., Grandclaude, P. and Marchal, E. (1980) A classification of volcanic and plutonic rocks using R1-R2 diagram and major element analyses. Its relationships with current nomenclature. Chemical Geology, 29, 183210.CrossRefGoogle Scholar
Desikachar, S.V. (1974) A review of the tectonic and geological history of eastern India in terms of plate tectonic theory. Journal of the Geological Society of India, 15, 137149.Google Scholar
Evans, P. (1964) The tectonic framework of Assam. Journal of the Geological Society of India, 5, 8096.Google Scholar
Foley, S.F., Andronikov, A.V. and Melzer, S. (2002) Petrology of ultramafic lamprophyres from the Beaver Lake area of Eastern Antarctica and their relation to the breakup of Gondwanaland. Mineralogy and Petrology, 74, 361384.CrossRefGoogle Scholar
Ghatak, A. and Basu, A.R. (2011) Vestiges of the Kerguelen plume in the Sylhet Traps, northeastern India. Earth and Planetary Science Letters, 308, 5264.CrossRefGoogle Scholar
Golani, P.R. (1991) Nangcharam fault: a major dislocation zone from western Meghalaya. Journal of the Geological Society of India, 37, 3138.Google Scholar
Grove, T.L. and Bryan, W.B. (1983) Fractionation of pyroxene-phyric MORB at low pressure: an experimental study. Contributions to Mineralogy and Petrology, 84, 293309.CrossRefGoogle Scholar
Gupta, R.P. and Sen, A.K. (1988) Imprints of Ninety- East Ridge in the Shillong Plateau. Indian Shield. Tectonophysics, 154, 335341.CrossRefGoogle Scholar
Hamilton, D.L. (1961) Nephelines as crystallization temperature indicators. Journal of Geology, 69, 321329.CrossRefGoogle Scholar
Heaman, L.M., Srivastava, R.K. and Sinha, A.K. (2002) A precise U-Pb zircon/baddeleyite age for the Jasra igneous complex, Karbi-Anglong district, Assam, NE India. Current Science, 82, 744748.Google Scholar
Kent, R.W., Saunders, A.D., Kempton, P.D. and Ghose, N.C. (1997) Rajmahal basalts, eastern India: mantle sources and melt distribution at a volcanic rifted margin. Pp. 145182 in: Large Igneous Provinces: Continental, Oceanic and Planetary Flood Volcanism (J.J. Mahoney and M.F. Coffin, editors). American Geophysical Union Monograph, 100. American Geophysical Union, Washington DC.CrossRefGoogle Scholar
Kent, R.W., Kelley, S.P. and Pringle, M.S. (1998) Mineralogy and 40Ar/39Ar geochronology of orangeites (Group II kimberlites) from the Damodar Valley, eastern India. Mineralogical Magazine, 62, 313323.CrossRefGoogle Scholar
Kent, R.W., Pringle, M.S., Mü ller, R.D., Saunders, A.D. and Ghose, N.C. (2002) 39Ar/40Ar geochronology of the Rajmahal basalts, India, and their relationships to the Kerguelen Plateau. Journal of Petrology, 43, 11411155.CrossRefGoogle Scholar
Kumar, D., Mamallan, R. and Dwivedy, K.K. (1996) Carbonatite magmatism in northeast India. Journal of Southeast Asian Earth Sciences, 13, 145158.CrossRefGoogle Scholar
Leake, B.E., Woolley, A.R., Arps, C.E.S., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, A.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J.A., Maresch, W.V., Nickel, E.H., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles: report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219246.Google Scholar
Lepage, L.D. (2003) ILMAT: An Excel worksheet for ilmenite-magnetite geothermometry and geobarometry. Computers and Geosciences, 29, 673678.CrossRefGoogle Scholar
Locock, A.J. (2008) An Excel spreadsheet to recast analyses of garnet into end-member components, and a synopsis of the crystal chemistry of natural silicate garnets. Computers and Geosciences, 34, 17691780.CrossRefGoogle Scholar
Lyubetskaya, T. and Korenaga, J. (2007) Chemical composition of Earth’s primitive mantle and its variance: 1. methods and results. Journal of Geophysical Research, 112, http://dx.doi.org/ 10.1029/2005JB004223.Google Scholar
Maitra, M., David, J.S. and Bhaduri, S. (2011) Melanite garnet-bearing nepheline syenite minor intrusion in Mawpyut ultramafic-mafic complex, Jaintia Hills, Meghalaya. Journal of Earth System Science, 120, 10331041.CrossRefGoogle Scholar
Mamallan, R., Kumar, D. and Bajpai, R.K. (1994) Jasra ultramafic-mafic-alkaline complex: a new find in the Shillong Plateau, northeastern India. Current Science, 66, 6465.Google Scholar
Melluso, L., Sethna, S.F., D’Antonio, M., Javeri, P. and Bennio, L. (2002) Geochemistry and petrogenesis of sodic and potassic mafic alkaline rocks in the Deccan Volcanic province, Mumbai area (India). Mineralogy and Petrology, 74, 236254.CrossRefGoogle Scholar
Melluso, L., Morra, V., Brotzu, P., Tommasini, S., Renna, M.R., Duncan, R.A., Franciosi, L. and d’Amelio, F. (2005) Geochronology and petrogenesis of the Cretaceous Antampombato- Ambatovy complex and associated dyke swarm, Madagascar. Journal of Petrology, 46, 19631996.CrossRefGoogle Scholar
Melluso, L., Morra, V., Riziky, H., Veloson, J., Lustrino, M., Del Gatto, L. and Modeste, V. (2007) Petrogenesis of a basanite-tephrite-phonolite volcanic suite in the Bobaomby (Cap d’Ambre) peninsula, northern Madagascar. Journal of African Earth Sciences, 49, 2942.CrossRefGoogle Scholar
Melluso, L., Lustrino, M., Ruberti, E., Brotzu, P., Gomes, C.B., Morbidelli, L., Morra, V., Svisero, D.P. and d’Amelio, F. (2008) Major and trace element composition of olivine, perovskite, clinopyroxene, Cr-Fe-Ti oxides, phlogopite and host kamafugites and kimberlites, Alto Paranaíba, Brazil. The Canadian Mineralogist, 46, 1940.CrossRefGoogle Scholar
Melluso, L., de’Gennaro, R. and Rocco, I. (2010a) Compositional variations of chromiferous spinel in Mg-rich rocks of the Deccan Traps, India. Journal of Earth System Science, 119, 343363.CrossRefGoogle Scholar
Melluso, L., Srivastava, R.K., Guarino, V., Zanetti, A. and Sinha, A.K. (2010b) Mineral compositions and magmatic evolution of the Sung Valley ultramaficalkaline- carbonatitic complex (NE India). The Canadian Mineralogist, 48, 205229.CrossRefGoogle Scholar
Melluso, L., le Roex, A.P. and Morra, V. (2011) Petrogenesis and Nd-Pb-Sr-isotope geochemistry of the olivine melilitites and olivine nephelinites (‘‘ankaratrites’’) in Madagascar. Lithos, 127, 505521.CrossRefGoogle Scholar
Melluso, L., de’Gennaro, R., Fedele, L., Franciosi, L. and Morra, V. (2012) Evidence of crystallization in residual, Cl-F-rich, agpaitic, trachyphonolitic magmas and primitive Mg-rich basalt-trachyphonolite interaction in the lava domes of the Phlegrean Fields (Italy). Geological Magazine, 149, 532551.CrossRefGoogle Scholar
Middlemost, E.A.K. (1975) The basalt clan. Earth Science Reviews, 11, 337364.CrossRefGoogle Scholar
Mitchell, R.H. and Fareeduddin (2009) Mineralogy of peralkaline lamproites from the Raniganj coalfield, India. Mineralogical Magazine, 73, 457477.CrossRefGoogle Scholar
Nag, S., Sengupta, S.K., Gaur, R.K. and Absar, A. (1999) Alkaline rocks of Samchampi-Samteran, District Karbi-Anglong, Assam, India. Journal of Earth System Science, 108, 3348.Google Scholar
Nambiar, A.R. (1988) Petrology of lamprophyres from parts of East Garo Hills and West Khasi Hills districts, Meghalaya. Journal of Geological Society of India, 32, 125136.Google Scholar
Nandy, D.R. (1980) Tectonic patterns in northeastern India. Indian Journal of Earth Sciences, 7, 103107.Google Scholar
Nicholls, J., Carmichael, I.S.E. and Stormer, J.C. Jr (1971) Silica activity and Ptotal in igneous rocks. Contributions to Mineralogy and Petrology, 33, 120.CrossRefGoogle Scholar
Putirka, K. (2008) Thermometers and Barometers for Volcanic Systems. Pp. 61120 in: Minerals, Inclusions and Volcanic Processes (K. Putirka and F.J. Tepley Jr, editors). Reviews in Mineralogy and Geochemistry, 69. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri. USA.Google Scholar
Ray, J.S., Pattanayak, S.K. and Pande, K. (2005) Rapid emplacement of the Kerguelen plume-related Sylhet Traps, eastern India: evidence from 39Ar-40Ar geochronology. Geophysical Research Letters, 32, http://dx.doi.org/10.1029/2005GL022586.CrossRefGoogle Scholar
Rock, N.M.S. (1978) Petrology and petrogenesis of the Monchique alkaline complex, southern Portugal. Journal of Petrology, 19, 171214.CrossRefGoogle Scholar
Roeder, P.L. and Emslie, R.F. (1970) Olivine-liquid equilibrium. Contributions to Mineralogy and Petrology, 29, 275289.CrossRefGoogle Scholar
Saha, A., Ganguly, S., Ray, J. and Chatterjee, N. (2010) Evaluation of phase chemistry and petrochemical aspects of Samchampi-Samteran differentiated alkaline complex of Mikir Hills, northeastern India. Journal of Earth System Science, 119, 675699.CrossRefGoogle Scholar
Shofiqul Islam, N., Shinjo, R. and Kayal, J.R. (2011) Pop-up tectonics of the Shillong Plateau in northeastern India: insight from numerical simulations. Gondwana Research, 20, 395404.CrossRefGoogle Scholar
Simonetti, A., Goldstein, S.L. Schmidberger, S.S. and Viladkar, S.G. (1998) Geochemical and Nd, Pb, and Sr isotope data from Deccan alkaline complexes - inferences for mantle sources and plume-lithosphere interaction. Journal of Petrology, 39, 18471864.CrossRefGoogle Scholar
Srivastava, R.K. and Sinha, A.K. (2004) Geochemistry of early Cretaceous alkaline ultramafic-mafic complex from Jasra, Karbi Anglong, Shillong Plateau, Northeastern India. Gondwana Research, 7, 549561.CrossRefGoogle Scholar
Srivastava, R.K. and Sinha, A.K. (2007) Nd and Sr isotope systematics and geochemistry of a plumerelated Early Cretaceous alkaline-mafic-ultramafic igneous complex from Jasra, Shillong Plateau, northeastern India. Geological Society of America Special Papers, 430, 815830.Google Scholar
Srivastava, R.K., Heaman, L.M., Sinha, A.K. and Shihua, S. (2005) Emplacement age and isotope geochemistry of Sung Valley alkaline-carbonatite complex, Shillong Plateau, northeastern India: implications for primary carbonate melt and genesis of the associated silicate rocks. Lithos, 81, 3354.CrossRefGoogle Scholar
Srivastava, R.K., Chalapathi Rao, N.V. and Sinha, A.K. (2009) Cretaceous potassic intrusives with affinities to aillikites from Jharia area: magmatic expression of metasomatically veined and thinned lithospheric mantle beneath Singhbhum Craton, Eastern India. Lithos, 112, 407418.CrossRefGoogle Scholar
Storey, M., Kent, R.W., Saunders, A.D., Salters, V.J., Hergt, J.M., Whitechurch, H., Sevigny, J.H., Thirlwall, M.F., Leat, P.T., Ghose, N.C. and Gifford, M. (1992) Lower Cretaceous volcanic rocks on continental margins and their relationship to the Kerguelen Plateau. Proceedings of the Ocean Drilling Program, Scientific Results, 120, 3347.Google Scholar
Wilkinson, J.F.G. and Hensel, H.D. (1994) Nephelines and analcimes in some alkaline igneous rocks. Contributions to Mineralogy and Petrology, 118, 7991.CrossRefGoogle Scholar
Zhu, B., Kidd, W.S.F., Rowley, D.B. and Currie, B.S. (2004) Chemical compositions and tectonic significance of chrome-rich spinels in the Tianba Flysch, southern Tibet. The Journal of Geology, 112, 417434.CrossRefGoogle Scholar
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 1: bulk-rock, CIPW norms and isotopic data

Download Melluso et al. supplementary material(File)
File 36.4 KB
Supplementary material: Image

Melluso et al. supplementary material

Supplementary figures: thin section photomicrographs of the Jasra samples 2

Download Melluso et al. supplementary material(Image)
Image 842.6 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 2: oxide compositions

Download Melluso et al. supplementary material(File)
File 32.8 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 3: olivine compositions

Download Melluso et al. supplementary material(File)
File 26.6 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 4: clinopyroxene compositions

Download Melluso et al. supplementary material(File)
File 36.4 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 5: amphibole and phlogopite compositions

Download Melluso et al. supplementary material(File)
File 34.8 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 6: feldspar and nepheline compositions

Download Melluso et al. supplementary material(File)
File 32.8 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 7: composition of apatite, titanite and garnet

Download Melluso et al. supplementary material(File)
File 29.7 KB
Supplementary material: File

Melluso et al. supplementary material

Supplementary Table 8: composition of perovskite and zirconolite

Download Melluso et al. supplementary material(File)
File 28.2 KB
Supplementary material: Image

Melluso et al. supplementary material

Supplementary figures: thin section photomicrographs of the Jasra samples 1

Download Melluso et al. supplementary material(Image)
Image 1.3 MB