Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T06:02:25.389Z Has data issue: false hasContentIssue false

Mineral phases and element composition of the copper hyperaccumulator lichen Lecanora polytropa

Published online by Cambridge University Press:  05 July 2018

O. W. Purvis*
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
B. Pawlik-Skowrońska
Affiliation:
Centre for Ecological Research, PAS at Dziekanów Leśny, Experimental Station, Niecała 18, 20-080 Lublin, Poland
G. Cressey
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
G. C. Jones
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
A. Kearsley
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
J. Spratt
Affiliation:
Natural History Museum, Cromwell Road, London, SW7 5BD, UK
*

Abstract

Mineral phases and element localization were investigated in the vivid turquoise-coloured lichen, Lecanora polytropa, sampled from a psammite boulder in a wall supporting mine spoil at the abandoned copper mine, Riddarhyttan Kopparverke, southern Sweden. Normally pale yellowish (usnic acid), the lichen is turquoise coloured internally with bluish inclusions. X-ray mapping shows that Cu occurs on and within the lichen and does not coincide with P or S, suggesting that it is indeed associated with carbon or other elements not detected (or reported) using X-ray mapping. Scanning electron microscopy in back-scatter mode confirmed that the greatest Cu concentrations occur in the form of crystalline aggregates in coloured inclusions below the major internal turquoise layer with smaller Cu contents. X-ray diffraction with a position-sensitive detector (XRD-PSD) confirmed coloured crystalline aggregates consisted of the copper oxalate, moolooite. The study confirms the value of XRD-PSD as a non-destructive tool to characterize small (~50 μm) metal oxalate inclusions obtained from within lichen samples.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alstrup, V. and Hansen, E.S. (1977) Three species of lichens tolerant of high concentrations of copper. Oikos, 29, 290293.CrossRefGoogle Scholar
Andersson, U.B. (2004) The Bastnds-type REE Mineralisations in North-western Bergslagen, Sweden — A Summary with Geological Background and Excursion Guide. Rapporter och meddelanden 119. Ostervala, Sveriges Geologiska Undersoking.Google Scholar
Ascaso, C, Galvan, J. and Ortega, C. (1982) The weathering of calcareous rocks by lichens. Pedobiologia, 24, 219.Google Scholar
Branquinho, C, Catarino, F., Brown, D.H., Pereira, M.J. and Soares, A. (1999) Improving the use of lichens as biomonitors of atmospheric metal pollution. Science of the Total Environment, 232, 6777.CrossRefGoogle ScholarPubMed
Callahan, D.L., Baker, A.J.M., Kolev, S.D. and Wedd, A.G. (2006) Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 212.CrossRefGoogle ScholarPubMed
Chisholm, J.E., Jones, G.C. and Purvis, O.W. (1987) Hydrated copper oxalate, moolooite, in lichens. Mineralogical Magazine, 51, 715718.CrossRefGoogle Scholar
Czehura, SJ. (1977) A lichen indicator of copper mineralization, Lights Creek District, Plumas County, California. Economic Geology, 72, 796803.CrossRefGoogle Scholar
Elix, J.A. (1996) Biochemistry and secondary metabolites. Pp. 154180 in: Lichen Biology (Nash, T.H., editor), Cambridge University Press, Cambridge, UK.Google Scholar
Haas, J.R. and Purvis, O.W. (2006) Lichen Biogeochemistry. Pp. 344376 in: Fungi in Biogeochemical Cycles (Gadd, G.M., editor) Cambridge, Cambridge University, UK.CrossRefGoogle Scholar
Huneck, S. and Yoshimura, I. (1996) Identification of Lichen Substances. Springer, Berlin.CrossRefGoogle Scholar
Jenkins, D.A., Johnson, A.H. and Freeman, C. (2000) Mynydd Parys Cu-Pb-Zn Mines: mineralogy, microbiology and acid mine drainage. Pp. 161 — 179 in: Environmental Mineralogy: Microbial Interactions, Anthropogenic Influences, Contaminated Land and Waste Management (Cotter-Howells, J.D., Campbell, L.S. Valsami-Jones, E. and Batchelder, M., editors). Mineralogical Society of Great Britain and Ireland, London.Google Scholar
Jones, D., Wilson, M.J. and Tait, J.M. (1980) Weathering of a basalt by Pertusaria corallina. The Lichenologist, 12, 277.Google Scholar
McLean, J., Purvis, O.W., Williamson, B.J. and Bailey, E.H. (1998) Role for lichen melanins in uranium remediation. Nature, 391, 649650.CrossRefGoogle Scholar
Morelli, E. and Scarano, G. (2004) Copper-induced changes of non-protein thiols and antioxidant enzymes in the marine microalga Phaeodactylum tricornutum. Plant Science, 167, 289296.CrossRefGoogle Scholar
Nash, T.H. (1996) Lichen Biology. Cambridge, Cambridge University Press, UK.Google Scholar
Pawlik-Skowronska, B., Purvis, O.W., Pirszel, J. and Skowronski, T. (2006) Cellular mechanisms of Cu-tolerance in the epilithic lichen Lecanora polytropa growing at a copper mine. The Lichenologist, 38, 267275.CrossRefGoogle Scholar
Poelt, J. (1955) Flechten der Schwarzen Wand in der Grossarl. Verhandlung Zoologische-Botanische Gesellschaft, 95, 107113.Google Scholar
Purvis, O.W. (1984) The occurrence of copper oxalate in lichens growing on copper sulphide-bearing rocks in Scandinavia. The Lichenologist, 16, 197204.CrossRefGoogle Scholar
Purvis, O.W. (1985) The Effect of Mineralization on Lichen Communities with Special Reference to Cupriferous Substrata. Department of Geology, Royal School of Mines. Imperial College, London.Google Scholar
Purvis, O.W. (1993) The botanical interest of mine spoil heaps — the lichen story. Journal of the Russell Society, 5, 4548.Google Scholar
Purvis, O.W. (1996) Interactions of lichens with metals. Science Progress, 79, 283309.Google Scholar
Purvis, O.W. and Halls, C. (1996) A review of lichens in metal-enriched environments. The Lichenologist, 28, 571601.CrossRefGoogle Scholar
Purvis, O.W. and James, P.W. (1985) Lichens of the Coniston copper mines. The Lichenologist, 17, 221237.CrossRefGoogle Scholar
Purvis, O.W. and Pawlik-Skowronska, B. (2008) Lichens and metals. Pp. 175200 in: Stress in Fungi (van West, P., Stratford, M. and Avery, S., editors). Elsevier, Amsterdam.Google Scholar
Purvis, O.W., Gilbert, O.L. and James, P.W. (1985) The influence of copper mineralization on Acarospora smaragdula. The Lichenologist, 17, 111 — 114.Google Scholar
Purvis, O.W., Elix, J.A., Broomhead, J.A. and Jones, G.C. (1987) The occurrence of copper norstictic acid in lichens from cupriferous substrata. The Lichenologist, 19, 193203.CrossRefGoogle Scholar
Purvis, O.W., Elix, J.A. and Gaul, K.L. (1990) The occurrence of copper-psoromic acid in lichens from cupriferous substrata. The Lichenologist, 22, 345354.CrossRefGoogle Scholar
Purvis, O.W., Coppins, B.J., Hawksworth, D.L.H., James, P.W. and Moore, D.M. (eds) (1992) The Lichen Flora of Great Britain and Ireland. Natural History Museum Publications in association with the British Lichen Society, London.Google Scholar
Purvis, O.W., Bailey, E.H., McLean, J., Kasama, T. and Williamson, B.J. (2004) Uranium biosorption by the lichen Trapelia involuta at a uranium mine. Geomicrobiology Journal, 21, 159167.CrossRefGoogle Scholar
Ryan, B.D. and Nash III, T.H. (1993) Lecanora section Placodium (lichenized ascomycotina) in North America: new taxa in the L. garovaglii Group. Bryologist, 96, 288298.Google Scholar
Ryback, G. and Tandy, P. (1992) Eighth supplementary list of British Isles Minerals (English). Mineralogical Magazine, 56, 261275.CrossRefGoogle Scholar
Sanita di Toppi, L., Gremigni, P., Pawlik-Skowronska, B., Prasad, M.N.S. and Cobbett, C.S. (2003) Response to heavy metals in plants: a molecular approach. Pp. 133156 in: Abiotic Stresses in Plants (Sanita di Toppi, L. and Pawlik-Skowronska, B., editors). Kluwer Academic Publishers, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Sarret, G., Manceau, A., Cuny, D., van Haluwyn, C, Deruelle, S., Hazemann, J.L., Soldo, Y., Eybert-Berard, L. and Menthonnex, J.J. (1998) Mechanisms of lichen resistance to metallic pollution. Environmental Science and Technology, 32, 33253330.CrossRefGoogle Scholar
Soare, L.C., Bowen, P., Lemaitre, J. and Hofmann, H. (2006) Precipitation of nanostructured copper oxalate: substructure and growth mechanism. Journal of Physical Chemistry, B110, 1776317771.CrossRefGoogle Scholar
Stanley, C.J. (1979) Mineralogical studies of copper, lead, zinc and cobalt mineralisation in the English Lake District. PhD thesis, University of Aston, Birmingham, UK.Google Scholar
Takani, M., Yajima, T., Masuda, H. and Yamauchi, O. (2002) Spectroscopic and structural characterization of copper(II) and palladium(II) complexes of a lichen substance usnic acid and its derivatives. Possible forms of environmental metals retained in lichens. Journal of Inorganic Biochemistry, 91, 139150.CrossRefGoogle ScholarPubMed
Wadsten, T. and Moberg, R. (1985) Calcium oxalate hydrates on the surface of lichens. The Lichenologist, 17, 239245.CrossRefGoogle Scholar
Whiting, S.N., Reeves, R.D., Richards, D., Johnson, M.S., Cooke, J.A., Malaisse, F., Paton, A., Smith, J.A.C., Angle, J.S., Chaney, R.L., Ginocchio, R., Jaffre, T., Johns, R., Mclntyre, T., Purvis, O.W., Salt, D.E., Schat, H., Zhao, F.J. and Baker, A.J.M. (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restoration Ecology, 12, 106116.CrossRefGoogle Scholar
Whiting, S.N., Reeves, R.D., Richards, D., Johnson, M.S., Cooke, J.A., Malaisse, F., Paton, A., Smith, J.A.C., Angle, J.S., Chaney, R.L., Ginocchio, R., Jaffre, T., Johns, R., Mclntyre, T., Purvis, O.W., Salt, D.E., Schat, H., Zhao, F.J. and Baker, A.J.M. (2005) Use of plants to manage sites contaminated with metals. Pp. 106116 in: Plant Nutritional Genomics (Broadley, M.R. and White, P.J., editors). Blackwell Publishing, CRC, USA.Google Scholar
Wild, H. (1968) Geobotanical anomalies in Rhodesia. 1. The vegetation of copper-bearing rocks. Kirkia, 7, 172.Google Scholar
Williamson, B.J., McLean, J. and Purvis, O.W. (1998) Application of X-ray element mapping across the lichen-rock interface. Journal of Microscopy, 191, 9196.CrossRefGoogle Scholar
Wilson, M.J. and Jones, D. (1984) The occurrence and significance of manganese oxalate in Pertusaria corallina (Lichenes). Pedobiologia, 26, 373379.Google Scholar
Wilson, M.J., Jones, D. and Russell, J.D. (1980) Glushinskite, a naturally occurring magnesium oxalate. Mineralogical Magazine, 43, 837840.CrossRefGoogle Scholar
Young, B. (1987) Glossary of the minerals of the English Lake District and adjoining areas. British Geological Survey, Newcastle upon Tyne, UK.Google Scholar