Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T02:43:52.588Z Has data issue: false hasContentIssue false

Microbial effects on mineral–radionuclide interactions and radionuclide solid-phase capture processes

Published online by Cambridge University Press:  05 July 2018

D. R. Brookshaw
Affiliation:
School of Earth, Environmental and Atmospheric Sciences, The University of Manchester, Manchester M13 9PL, UK
R. A. D. Pattrick
Affiliation:
School of Earth, Environmental and Atmospheric Sciences, The University of Manchester, Manchester M13 9PL, UK
J. R. Lloyd
Affiliation:
School of Earth, Environmental and Atmospheric Sciences, The University of Manchester, Manchester M13 9PL, UK
D. J. Vaughan
Affiliation:
School of Earth, Environmental and Atmospheric Sciences, The University of Manchester, Manchester M13 9PL, UK

Abstract

Understanding the environmental and biogeochemical behaviour of radionuclides is essential for managing our nuclear legacy safely. Remediation efforts and the concept of geological disposal of nuclear waste focus on immobilizing radionuclides within the subsurface. Here we review recent developments in the understanding of solid-phase capture processes of Cs, Sr, Tc, U, Pu and Np. Abiotic interactions between minerals and these radionuclides (including sorption, reductive precipitation and co-precipitation) have been studied in various conditions. Microbially driven processes are much less well characterized, for example the effects of microbial reduction on the structure and reactivity of existing minerals, or their role in the formation of new minerals. Metabolites released by bacteria can play a role in both mineral dissolution and formation, and better understanding their release and role in mineralization has great potential in the development of solid-phase capture processes for radionuclides.

With the aid of a map of the research landscape covered by this review (created using a cluster-analysis tool, a self-organizing map), we highlight the most promising sequestration processes for specific radionuclides. However, radionuclides exhibit highly species-specific behaviour in their interactions with minerals and microorganisms. More research is required to characterize the role mineral surfaces play in bioreductive immobilization of Pu and Np, the reduction products formed, and their relative stability. Further studies should concentrate on more environmentally relevant experiments that include bacteria, minerals and radionuclides.

Type
Review
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, C., Jakobsson, A.M. and Pedersen, K. (2007) Influence of in situ biofilm coverage on the radionuclide adsorption capacity of subsurface granite. Environmental Science &. Technology, 41, 830836 CrossRefGoogle Scholar
Arnold, T., Utsunomiya, S., Geipel, G., Ewing, R.C., Baumann, N. and Brendler, V. (2006) Adsorbed U(VI) surface species on muscovite identified by laser fluorescence spectroscopy and transmission electron microscopy. Environmental Scienc. Technology, 40, 46464652 CrossRefGoogle Scholar
Baik, M.H., Hyun, S.P., Cho, W.J. and Hahn, P.S. (2004) Contribution of minerals to the sorption of U(VI) on granite. Radiochimic. Acta, 92, 663669 Google Scholar
Baik, M.H., Kim, S.S., Lee, J.K., Lee, S.Y., Kim, G.Y. and Yun, S.T. (2010) Sorption of 14C, 99Tc, 137Cs, 90Sr, 63Ni, and 241Am onto a rock and a fracturefilling material from the Wolsong low- and intermediate-level radioactive waste repository, Gyeongju, Korea. Journal of Radioanalytical and Nuclea. Chemistry, 283, 337345 Google Scholar
Banaszak, J.E., Rittmann, B.E. and Reed, D.T. (1999) Subsurface interactions of actinide species and microorganisms: implications for the bioremediation of actinide-organic mixtures. Journal of Radioanalytical and Nuclea. Chemistry, 241, 385435 Google Scholar
Barker, W.W., Welch, S.A., Chu, S. and Banfield, J.F. (1998) Experimental observations of the effects of bacteria on aluminosilicate weathering. America. Mineralogist, 83, 15511563 CrossRefGoogle Scholar
Barnett, M.O., Jardine, P.M., Brooks, S.C. and Selim, H.M. (2000) Adsorption and transport of uranium(VI) in subsurface media. Soil Science Society of Americ. Journal, 64, 908917 Google Scholar
Beazley, M.J., Martinez, R.J., Sobecky, P.A., Webb, S.M. and Taillefert, M. (2007) Uranium biominer- alization as a result of bacterial phosphatase activity: insights from bacterial isolates from a contaminated subsurface. Environmental Science &. Technology, 41, 57015707 CrossRefGoogle Scholar
Beazley, M.J., Martinez, R.J., Sobecky, P.A., Webb, S.M. and Taillefert, M. (2009) Nonreductive biomineralization of uranium(VI) phosphate via microbial phosphatase activity in anaerobic conditions. Geomicrobiolog. Journal, 26, 431441 Google Scholar
Begg, J.D.C., Burke, I.T. and Morris, K. (2007) The behaviour of technetium during microbial reduction in amended soils from Dounreay, UK. Science of the Tota. Environment, 373, 297304 Google Scholar
Begg, J.D.C., Burke, I.T., Lloyd, J.R., Boothman, C., Shaw, S., Charnock, J.M. and Morris, K. (2011) Bioreduction behavior of U(VI) sorbed to sediments. Geomicrobiolog. Journal, 28, 160171 Google Scholar
Bellenger, J.P. and Staunton, S. (2008) Adsorption and desorption of 85Sr and 137Cs on reference minerals, with and without inorganic and organic surface coatings. Journal of Environmenta. Radioactivity, 99, 831840 CrossRefGoogle Scholar
Bernier-Latmani, R., Veeramani, H., Vecchia, E.D., Junier, P., Lezama-Pacheco, J.S., Suvorova, E.I., Sharp, J.O., Wigginton, N.S. and Bargar, J.R. (2010) Non-uraninite products of microbial U(VI) reduction. Environmental Science &. Technology, 44, 94569462 CrossRefGoogle Scholar
Beveridge, T.J. (1989) Role of cellular design in bacterial metal accumulation and mineralization. Annua. Review of Microbiology, 43, 147171 CrossRefGoogle Scholar
Beveridge, T.J. (1999) Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181, 47254733 CrossRefGoogle ScholarPubMed
Beveridge, T.J. and Graham, L.L. (1991) Surface-layers of bacteria. Microbiologica. Reviews, 55, 684705 Google Scholar
Boonchayaanant, B., Nayak, D., Du, X. and Criddle, C.S. (2009) Uranium reduction and resistance to reoxidation under iron-reducing and sulfate-reducing conditions. Wate. Research, 43, 46524664 Google Scholar
Borch, T., Kretzschmar, R., Kappler, A., Van Cappellen, P., Ginder-Vogel, M., Voegelin, A. and Campbell, K. (2010) Biogeochemical redox processes and their impact on contaminant dynamics. Environmental Science & Technology, 44, 1523.Google ScholarPubMed
Bostick, B.C., Vairavamurthy, M.A., Karthikeyan, K.G. and Chorover, J. (2002) Cesium adsorption on clay minerals: an EXAFS spectroscopic investigation. Environmental Science &. Technology, 36, 26702676 CrossRefGoogle Scholar
Boukhalfa, H., Icopini, G.A., Reilly, S.D. and Neu, M.P. (2007) Plutonium(IV) reduction by the metalreducing bacteria Geobacter metallireducens GS-15 and Shewanella oneidensis MR-1. Applied and Environmenta. Microbiology, 73, 58975903 Google Scholar
Brooks, S.C., Fredrickson, J.K., Carroll, S.L., Kennedy, D.W., Zachara, J.M., Plymale, A.E., Kelly, S.D., Kemner, K.M. and Fendorf, S. (2003) Inhibition of bacterial U(VI) reduction by calcium. Environmental Science &. Technology, 37, 18501858 CrossRefGoogle Scholar
Brown, G.E., Foster, A.L. and Ostergren, J.D. (1999) Mineral surfaces and bioavailability of heavy metals: a molecular-scale perspective. Proceedings of the National Academy of Sciences of the Unite. States of America, 96, 33883395 Google Scholar
Burke, I.T., Boothman, C., Lloyd, J.R., Mortimer, R.J.G., Livens, F.R. and Morris, K. (2005) Effects of progressive anoxia on the solubility of technetium in sediments. Environmental Science &. Technology, 39, 41094116 Google Scholar
Burke, I.T., Boothman, C., Lloyd, J.R., Livens, F.R., Charnock, J.M., McBeth, J.M., Mortimer, R.J.G. and Morris, K. (2006) Reoxidation behavior of technetium, iron, and sulfur in estuarine sediments. Environmental Science &. Technology, 40, 35293535 CrossRefGoogle Scholar
Burke, I.T., Livens, F.R., Lloyd, J.R., Brown, A.P., Law, G.T.W., McBeth, J.M., Ellis, B.L., Lawson, R.S. and Morris, K. (2010) The fate of technetium in reduced estuarine sediments: combining direct and indirect analyses. Applie. Geochemistry, 25, 233241 CrossRefGoogle Scholar
Chakraborty, S., Favre, F., Banerjee, D., Scheinost, A.C., Mullet, M., Ehrhardt, J.J., Brendle, J., Vidal, L. and Charlet, L. (2010) U(VI) sorption and reduction by Fe(II) sorbed on montmorillonite. Environmental Science &. Technology, 44, 37793785 CrossRefGoogle Scholar
Chardon, E.S., Bosbach, D., Bryan, N.D., Lyon, I.C., Marquardt, C., Romer, J., Schild, D., Vaughan, D.J., Wincott, P.L., Wogelius, R.A. and Livens, F.R. (2008) Reactions of the feldspar surface with metal ions: sorption of Pb(II), U(VI) and Np(V), and surface analytical studies of reaction with Pb(II) and U(VI). Geochimica et Cosmochimica Acta, 72, 288297 CrossRefGoogle Scholar
Charlet, L., Silvester, E. and Liger, E. (1998) Ncompound reduction and actinide immobilisation in surficial fluids by Fe(II): the surface FeIIIOFeIIOHº species, as major reductant. Chemical Geology, 151, 8593.CrossRefGoogle Scholar
Choppin, G.R. (2006) Environmental behavior of actinides. Czechoslovak Journal of Physics, 56, D13D21.CrossRefGoogle Scholar
Cornell, R.M. (1993) Adsorption of cesium on minerals: a review. Journal of Radioanalytical and Nuclear Chemistr. Articles, 171, 483500 Google Scholar
Curti, E. (1999) Coprecipitation of radionuclides with calcite: estimation of partition coefficients based on a review of laboratory investigations and geochemical data. Applie. Geochemistry, 14, 433445 CrossRefGoogle Scholar
Cutting, R.S., Coker, V.S., Fellowes, J.W., Lloyd, J.R. and Vaughan, D.J. (2009) Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochimica et Cosmochimica Acta, 73, 40044022 Google Scholar
Cutting, R.S., Coker, V.S., Telling, N.D., Kimber, R.L., Pearce, C.I., Ellis, B.L., Lawson, R.S., Van der Laan, G., Pattrick, R.A.D., Vaughan, D.J., Arenholz, E. and Lloyd, J.R. (2010) Optimizing Cr(VI) and Tc(VII) remediation through nanoscale biomineral engineering. Environmental Science &. Technology, 44, 25772584 CrossRefGoogle Scholar
DEFRA, BERR and the devolved administrations for Wales and Northern Ireland (2008) Managing Radioactive Waste Safely: A Framework for Implementing Geological Disposal. DEFRA, TSO, Norwich. UK.Google Scholar
Dong, H.L., Jaisi, D.P., Kim, J. and Zhang, G.X. (2009) Microbe-clay mineral interactions. American Mineralogist, 94, 15051519 CrossRefGoogle Scholar
Douglas, S. and Beveridge, T.J. (1998) Mineral formation by bacteria in natural microbial communities. Fems Microbiology Ecology, 26, 7988 CrossRefGoogle Scholar
Dozol, M., Hagemann, R., Hoffman, D.C., Adloff, J.P., Vongunten, H.R., Foos, J., Kasprzak, K.S., Liu, Y.F., Zvara, I., Ache, H.J., Das, H.A., Hagemann, R.J.C., Herrmann, G., Karol, P., Maenhaut, W., Nakahara, H., Sakanoue, M., Tetlow, J.A., Baro, G.B., Fardy, J.J., Benes, P., Roessler, K., Roth, E., Burger, K., Steinnes, E., Kostanski, M.J., Peisach, M., Liljenzin, J.O., Aras, N.K., Myasoedov, B.F. and Holden, N.E. (1993) Radionuclide migration in groundwaters: review of the behaviour of actinides (technical report). Pure and Applie. Chemistry, 65, 10811102 Google Scholar
Drot, R., Roques, J. and Simoni, E. (2007) Molecular approach of the uranyl/mineral interfacial phenomena. Comptes Rendu. Chimie, 10, 10781091 CrossRefGoogle Scholar
Duff, M.C., Hunter, D.B., Triay, I.R., Bertsch, P.M., Reed, D.T., Sutton, S.R., Shea-Mccarthy, G., Kitten, J., Eng, P., Chipera, S.J. and Vaniman, D.T. (1999) Mineral associations and average oxidation states of sorbed Pu on tuff. Environmental Scienc. Technology, 33, 21632169 Google Scholar
Ehrlich, H.L. (1998) Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 4560.CrossRefGoogle Scholar
Ferris, F.G., Wiese, R.G. and Fyfe, W.S. (1994) Precipitation of carbonate minerals by microorganisms - implications for silicate weathering and the global carbon-dioxide budget. Geomicrobiology Journal, 12, 113 Google Scholar
Ferris, F.G., Hallberg, R.O., Lyven, B. and Pedersen, K. (2000) Retention of strontium, cesium, lead and uranium by bacterial iron oxides from a subterranean environment . Applied Geochemistry, 15, 10351042 CrossRefGoogle Scholar
Fletcher, K.E., Boyanov, M.I., Thomas, S.H., Wu, Q.Z., Kemner, K.M. and Loffler, F.E. (2010) U(VI) reduction to mononuclear U(IV) by Desulfitobacterium species. Environmental Scienc. Technology, 44, 47054709 Google Scholar
Fredrickson, J.K. and Zachara, J.M. (2008) Electron transfer at the microbe-mineral interface: a grand challenge in biogeochemistry. Geobiology, 6, 245253 CrossRefGoogle ScholarPubMed
Fredrickson, J.K., Zachara, J.M., Kennedy, D.W., Liu, C.X., Duff, M.C., Hunter, D.B. and Dohnalkova, A. (2002) Influence of Mn oxides on the reduction of uranium(VI) by the metal-reducing bacterium Shewanella putrefaciens. Geochimica et Cosmochimica Acta, 66, 32473262 CrossRefGoogle Scholar
Fredrickson, J.K., Zachara, J.M., Plymale, A.E., Heald, S.M., McKinley, J.P., Kennedy, D.W., Liu, C.X. and Nachimuthu, P. (2009) Oxidative dissolution potential of biogenic and ablogenic TcO2 in subsurface sediments. Geochimica et Cosmochimica Acta, 73, 22992313 CrossRefGoogle Scholar
Fujita, Y., Redden, G.D., Ingram, J.C., Cortez, M.M., Ferris, F.G. and Smith, R.W. (2004) Strontium incorporation into calcite generated by bacterial ureolysis. Geochimica et Cosmochimica Acta, 68, 32613270 CrossRefGoogle Scholar
Gadd, G.M. (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. Journal of Chemical Technology and Biotechnology, 84, 1328 CrossRefGoogle Scholar
Gadd, G.M. (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology. SGM, 156, 609643 CrossRefGoogle Scholar
Gault, A.G., Ibrahim, A., Langley, S., Renaud, R., Takahashi, Y., Boothman, C., Lloyd, J.R., Clark, I.D., Ferris, F.G. and Fortin, D. (2011) Microbial and geochemical features suggest iron redox cycling within bacteriogenic iron oxide-rich sediments. Chemical Geology, 281, 4151.CrossRefGoogle Scholar
Geissler, A., Law, G.T.W., Boothman, C., Morris, K., Burke, I.T., Livens, F.R., Lloyd, J.R. (2011) Microbial communities associated with the oxidation of iron and technetium in bioreduced sediments. GeomicrobiologyJournal, 28, 507518 Google Scholar
Gollapudi, U.K., Knutson, C.L., Bang, S.S. and Islam, M.R. (1995) A new method for controlling leaching through permeable channels. Chemosphere, 30, 695705 Google Scholar
Gralnick, J.A. and Newman, D.K. (2007) Extracellular respiration. Molecular Microbiology, 65, 111.CrossRefGoogle ScholarPubMed
Handley-Sidhu, S., Keith-Roach, M.J., Lloyd, J.R. and Vaughan, D.J. (2010) A review of the environmental corrosion, fate and bioavailability of munitions grade depleted uranium. Science of the Total Environment, 408, 56905700 CrossRefGoogle ScholarPubMed
Handley-Sidhu, S., Renshaw, J.C., Yong, P., Kerley, R. and Macaskie, L.E. (2011) Nano-crystalline hydroxyapatite bio-mineral for the treatment of strontium from aqueous solutions. Biotechnology Letters, 33, 7987.CrossRefGoogle ScholarPubMed
Hansel, C.M., Benner, S.G., Neiss, J., Dohnalkova, A., Kukkadapu, R.K. and Fendorf, S. (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. Geochimica et Cosmochimica Acta, 67, 29772992 CrossRefGoogle Scholar
Heberling, F., Brendebach, B. and Bosbach, D. (2008a) Neptunium(V) adsorption to calcite. Journal of Contaminant Hydrology, 102, 246252 CrossRefGoogle Scholar
Heberling, F., Denecke, M.A. and Bosbach, D. (2008b) Neptunium(V) coprecipitation with calcite. Environmental Science & Technology, 42, 471476 CrossRefGoogle Scholar
Hinton, T.G., Kaplan, D.I., Knox, A.S., Coughlin, D.P., Nascimento, R.V., Watson, S.I., Fletcher, D.E. and Koo, B.J. (2006) Use of illite clay for in situ remediation of 137Cs-contaminated water bodies: field demonstration of reduced biological uptake. Environmental Science &. Technology, 40, 45004505 CrossRefGoogle Scholar
Hoare, Z. (2008) Landscapes of naive bayes classifiers. Pattern Analysis and Applications, 11, 5972 CrossRefGoogle Scholar
Hu, Q.H., Weng, J.Q. and Wang, J.S. (2010a) Sources of anthropogenic radionuclides in the environment: a review. Journal of Environmenta. Radioactivity, 101, 426437 CrossRefGoogle Scholar
Hu, Y.J., Schwaiger, L.K., Booth, C.H., Kukkadapu, R.K., Cristiano, E., Kaplan, D. and Nitsche, H. (2010b) Molecular interactions of plutonium(VI) with synthetic manganese-substituted goethite. Radiochimica Acta, 98, 655663 CrossRefGoogle Scholar
Icopini, G.A., Boukhalfa, H. and Neu, M.P. (2007) Biological reduction of Np(V) and Np(V) citrate by metal-reducing bacteria. Environmental Scienc. Technology, 41, 27642769 CrossRefGoogle Scholar
Ilton, E.S., Heald, S.M., Smith, S.C., Elbert, D. and Liu, C.X. (2006) Reduction of uranyl in the interlayer region of low iron micas under anoxic and aerobic conditions. Environmental Science &. Technology, 40, 50035009 Google Scholar
Istok, J.D., Senko, J.M., Krumholz, L.R., Watson, D., Bogle, M.A., Peacock, A., Chang, Y.J. and White, D.C. (2004) In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environmental Science &. Technology, 38, 468475 CrossRefGoogle Scholar
Jeon, B.H., Kelly, S.D., Kemner, K.M., Barnett, M.O., Burgos, W.D., Dempsey, B.A. and Roden, E.E. (2004) Microbial reduction of U(VI) at the solid-- water interface. Environmental Scienc. Technology, 38, 56495655 CrossRefGoogle Scholar
Jroundi, F., Merroun, M.L., Arias, J.M., Rossberg, A., Selenska-Pobell, S. and Gonzalez-Munoz, M.T. (2007) Spectroscopic and microscopic characterization of uranium biomineralization in Myxococcus xanthus. Geomicrobiolog. Journal, 24, 441449 Google Scholar
Kaplan, D.I., Powell, B.A., Duff, M.C., Demirkanli, D.I., Denham, M., Fjeld, R.A. and Molz, F.J. (2007) Influence of sources on plutonium mobility and oxidation state transformations in vadose zone sediments. Environmental Science &. Technology, 41, 74177423 CrossRefGoogle Scholar
Kaplan, D.I., Powell, B.A., Gumapas, L., Coates, J.T., Fjeld, R.A. and Diprete, D.P. (2006) Influence of pH on plutonium desorption/solubilization from sediment. Environmental Science &. Technology, 40, 59375942 CrossRefGoogle Scholar
Keeney-Kennicutt, W.L. and Morse, J.W. (1984) The interaction of Np(V)O2+ with common mineral surfaces in dilute aqueous-solutions and seawater. Marin. Chemistry, 15, 133150 Google Scholar
Keeney-Kennicutt, W.L. and Morse, J.W. (1985) The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute-solutions and seawater. Geochimica et Cosmochimica Acta, 49, 25772588 CrossRefGoogle Scholar
Keith-Roach, M.J., Morris, K. and Dahlgaard, H. (2003) An investigation into technetium binding in sediments. Marin. Chemistry, 81, 149162 Google Scholar
Khijniak, T.V., Slobodkin, A.I., Coker, V., Renshaw, J.C., Livens, F.R., Bonch-Osmolovskaya, E.A., Birkeland, N.K., Medvedeva-Lyalikova, N.N. and Lloyd, J.R. (2005) Reduction of uranium(VI) phosphate during growth of the thermophilic bacterium Thermoterrabacterium ferrireducens. Applied and Environmenta. Microbiology, 71, 64236426 Google Scholar
Kienzler, B., Vejmelka, P., Romer, J., Schild, D. and Jansson, M. (2009) Actinide migration in fractures of granite host rock: laboratory and in situ investigations. Nuclea. Technology, 165, 223240 Google Scholar
Kim, J., Dong, H.L., Seabaugh, J., Newell, S.W. and Eberl, D.D. (2004) Role of microbes in the smectiteto- illite reaction. Science, 303, 830832 CrossRefGoogle ScholarPubMed
Koch-Steindl, H. and Prohl, G. (2001) Considerations on the behaviour of long-lived radionuclides in the soil. Radiation and Environmenta. Biophysics, 40, 93104 Google Scholar
Kohonen, T. (1990) The self-organizing map. Proceedings of th. IEEE, 78, 14641480 CrossRefGoogle Scholar
Konhauser, K.O., Mortimer, R.J.G., Morris, K. and Dunn, V. (2002) The role of microorganisms during sediment diagenesis: implications for radionuclide mobility. Pp. 61-100 in: Interactions of Microorganisms with Radionuclides (M.J. Keith- Roach and F. Livens, editors). Radioactivity in the Environment, 2. Elsevier, Oxford. UK..Google Scholar
Kostka, J.E.,Haefele, E., Viehweger, R. and Stucki, J.W. (1999a) Respiration and dissolution of iron(III) containing clay minerals by bacteria. Environmental Science &. Technology, 33, 31273133 CrossRefGoogle Scholar
Kostka, J.E., Wu, J., Nealson, K.H. and Stucki, J.W. (1999b) The impact of structural Fe(III) reduction by bacteria on the surface chemistry of smectite clay minerals. Geochimica et Cosmochimica Acta, 63, 37053713 CrossRefGoogle Scholar
Kukkadapu, R.K., Zachara, J.M., Fredrickson, J.K., McKinley, J.P., Kennedy, D.W., Smith, S.C. and Dong, H.L. (2006) Reductive biotransformation of Fe in shale-limestone saprolite containing Fe(III) oxides and Fe(II)/Fe(III) phyllosilicates. Geochimica et Cosmochimica Acta, 70, 36623676 CrossRefGoogle Scholar
Lack, J.G., Chaudhuri, S.K., Kelly, S.D., Kemner, K.M., óConnor, S.M. and Coates, J.D. (2002) Immobilization of radionuclides and heavy metals through anaerobic bio-oxidation of Fe(II). Applied and Environmenta. Microbiology, 68, 27042710 Google Scholar
Langley, S., Gault, A.G., Ibrahim, A., Takahashi, Y., Renaud, R., Fortin, D., Clark, I.D. and Ferris, F.G. (2009) Strontium desorption from bacteriogenic iron oxides (BIOS) subjected to microbial Fe(III) reduction. Chemical Geology, 262, 217228 CrossRefGoogle Scholar
Larese-Casanova, P., Haderlein, S.B. and Kappler, A. (2010) Biomineralization of lepidocrocite and goethite by nitrate-reducing Fe(II)-oxidizing bacteria: effect of pH, bicarbonate, phosphate, and humic acids. Geochimica et Cosmochimica Acta, 74, 37213734 CrossRefGoogle Scholar
Latta, D.E., Gorski, C.A., Boyanov, M.I., Kemner, K.M., Scherer, M.M. (2012) Influence of magnetite stoichiometry on UVI reduction. Environmental Science &. Technology, 46, 778786 CrossRefGoogle Scholar
Law, G.T.W., Geissler, A., Lloyd, J.R., Livens, F.R., Boothman, C., Begg, J.D.C., Denecke, M.A., Rothe, J., Dardenne, K., Burke, I.T., Charnock, J.M. and Morris, K. (2010) Geomicrobiological redox cycling of the transuranic element neptunium. Environmental Science &. Technology, 44, 89248929 CrossRefGoogle Scholar
Law, G.T.W., Geissler, A., Burke, I.T., Livens, F.R., Lloyd, J.R., McBeth, J.M. and Morris, K. (2011) Uranium redox cycling in sediment and biomineral systems. Geomicrobiolog. Journal, 28, 497506 Google Scholar
Lear, G., McBeth, J.M., Boothman, C., Gunning, D.J., Ellis, B.L., Lawson, R.S., Morris, K., Burke, I.T., Bryan, N.D., Brown, A.P., Livens, F.R. and Lloyd, J.R. (2010) Probing the biogeochemical behavior of technetium using a novel nuclear imaging approach. Environmental Science &. Technology, 44, 156162 CrossRefGoogle Scholar
Lee, S.Y., Baik, M.H. and Lee, Y.B. (2009a) Adsorption of uranyl ions and microscale distribution on Febearing mica. Applied Clay Science, 44, 259264 CrossRefGoogle Scholar
Lee, S.Y., Baik, M.H., Lee, Y.J. and Lee, Y.B. (2009b) Adsorption of U(VI) ions on biotite from aqueous solutions. Applied Clay Science, 46, 255259 CrossRefGoogle Scholar
Lee, S.Y., Baik, M.H. and Choi, J.W. (2010) Biogenic formation and growth of uraninite (UO2). Environmental Science &. Technology, 44, 84098414 CrossRefGoogle Scholar
Liu, C.X., Zachara, J.M., Zhong, L.R., Heald, S.M., Wang, Z.M., Jeon, B.H. and Fredrickson, J.K. (2009) Microbial reduction of intragrain U(VI) in contaminated sediment. Environmental Scienc. Technology, 43, 49284933 CrossRefGoogle Scholar
Liu, C.X., Zachara, J.M., Zhong, L.R., Kukkadupa, R., Szecsody, J.E. and Kennedy, D.W. (2005) Influence of sediment bioreduction and reoxidation on uranium sorption. Environmental Science &. Technology, 39, 41254133 CrossRefGoogle Scholar
Livens, F.R., Jones, M.J., Hynes, A.J., Charnock, J.M., Mosselmans, J.F.W., Hennig, C., Steele, H., Collison, D., Vaughan, D.J., Pattrick, R.A.D., Reed, W.A. and Moyes, L.N. (2002) X-ray absorption spectroscopy studies of reactions of technetium, uranium and neptunium with mackinawite. Journal of Environmenta. Radioactivity, 74, 211219 CrossRefGoogle Scholar
Lloyd, J.R. (2003) Microbial reduction of metals and radionuclides. Fems Microbiolog. Reviews, 27, 411—425Google Scholar
Lloyd, J.R. and Macaskie, L.E. (2000) Bioremediation of radionuclide-containing wastwaters. Pp. 277-329 in: Environmental Microbe-Metal Interactions (D.R. Lovley, editor). American Society for Microbiology, Washington D.C.Google Scholar
Lloyd, J.R. and Macaskie, L.E. (2002) Biochemical Basis of Microbe-Radionuclide Interactions. Pp. 313-341 in: Interactions of Microorganisms with Radionuclides (M.J. Keith-Roach and F. Livens, editors). Radioactivity in the Environment, 2. Elsevier, Oxford.UK.Google Scholar
Lloyd, J.R., Cole, J.A. and Macaskie, L.E. (1997) Reduction and removal of heptavalent technetium from solution by Escherichia coli. Journal of Bacteriology, 179, 20142021 CrossRefGoogle ScholarPubMed
Lloyd, J.R., Sole, V.A., Van Praagh, C.V.G. and Lovley, D.R. (2000a) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Applied and Environmental Microbiology, 66, 37433749 CrossRefGoogle Scholar
Lloyd, J.R., Yong, P. and Macaskie, L.E. (2000b) Biological reduction and removal of Np(V) by two microorganisms. Environmental Science & Technology, 34, 12971301 CrossRefGoogle Scholar
Lloyd, J.R., Chesnes, J., Glasauer, S., Bunker, D.J., Livens, F.R. and Lovley, D.R. (2002) Reduction of actinides and fission products by Fe(III)-reducing bacteria. Geomicrobiolog. Journal, 19, 103120 Google Scholar
Lloyd, J.R., Lovley, D.R. and Macaskie, L.E. (2003) Biotechnological application of metal-reducing microo rgan i s m s . Advanc e s in App l i e. Microbiology, 53, 85128 Google Scholar
Lovley, D.R. and Phillips, E.J.P. (1988) Novel mode of microbial energy-metabolism: organic-carbon oxidation coupled to dissimilatory reduction of iron or manganese. Applied and Environmenta. Microbiology, 54, 14721480 Google ScholarPubMed
Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Landa, E.R. (1991) Microbial reduction of uranium. Nature, 350, 413416 CrossRefGoogle Scholar
Macaskie, L.E. and Basnakova, G. (1998) Microbially enhanced chemisorption of heavy metals: a method for the bioremediation of solutions containing long lived isotopes of neptunium and plutonium. Environmental Science &. Technology, 32, 184187 CrossRefGoogle Scholar
Macaskie, L.E., Empson, R.M., Cheetham, A.K., Grey, C.P. and Skarnulis, A.J. (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4. Science, 257, 782784 CrossRefGoogle Scholar
Macaskie, L.E., Bonthrone, K.M. and Rouch, D.A. (1994) Phosphatase-mediated heavy-metal accumulation by a Citobacter sp. and related enterobacteria. FEMS Microbiolog. Letters, 121, 141146 Google Scholar
Macaskie, L.E., Bonthrone, K.M., Yong, P. and Goddard, D.T. (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology-UK, 146, 18551867 CrossRefGoogle ScholarPubMed
Marshall, M.J., Beliaev, A.S. and Fredrickson, J.K. (2010) Microbiological Transformations of Radionuclides in the Subsurface. Pp. 95-114 in: Environmental Microbiology, second edition (R. Mitchell and J.-D. Gu, editors). Wiley- Blackwell, Hoboken, New Jersey, USA.Google Scholar
Martinez, R.J., Beazley, M.J., Taillefert, M., Arakaki, A.K., Skolnick, J. and Sobecky, P.A. (2007) Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metalcontaminated subsurface soils. Environmental. Microbiology, 9, 31223133 Google Scholar
Maset, E.R., Sidhu, S.H., Fisher, A., Heydon, A., Worsfold, P.J., Cartwright, A.J. and Keith-Roach, M.J. (2006) Effect of organic co-contaminants on technetium and rhenium speciation and solubility under reducing conditions. Environmental Scienc. Technology, 40, 54725477 CrossRefGoogle Scholar
McBeth, J.M., Lear, G., Lloyd, J.R., Livens, F.R., Morris, K. and Burke, I.T. (2007) Technetium reduction and reoxidation in aquifer sediments. Geomicrobiolog. Journal, 24, 189197 Google Scholar
McBeth, J.M., Lloyd, J.R., Law, G.T.W., Livens, F.R., Burke, I.T. and Morris, K., (2011) Redox interactions of technetium with iron-bearing minerals. Mineralogica. Magazine, 75, 24192430 Google Scholar
McCubbin, D., Leonard, K.S., Greenwood, R.C. and Taylor, B.R. (2004) Solid-solution partitioning of plutonium in surface waters at the atomic weapons establishment Aldermaston (UK). Science of the Tota. Environment, 332, 203216 Google Scholar
McKinley, J.P., Zeissler, C.J., Zachara, J.M., Serne, R.J., Lindstrom, R.M., Schaef, H.T. and Orr, R.D. (2001) Distribution and retention of 137Cs in sediments at the Hanford site, Washington. Environmental Science &. Technology, 35, 34333441 CrossRefGoogle Scholar
McKinley, J.P., Zachara, J.M., Heald, S.M., Dohnalkova, A., Newville, M.G. and Sutton, S.R. (2004) Microscale distribution of cesium sorbed to biotite and muscovite. Environmental Scienc. Technology, 38, 10171023 CrossRefGoogle Scholar
McKinley, J.P., Zachara, J.M., Smith, S.C. and Liu, C. (2007) Cation exchange reactions controlling desorption of 90Sr2+ from coarse-grained contaminated sediments at the Hanford site, Washington. Geochimica et Cosmochimica Acta, 71, 305325 CrossRefGoogle Scholar
McLean, R.J.C., Fortin, D. and Brown, D.A. (1996) Microbial metal-binding mechanisms and their relation to nuclear waste disposal. Canadia. Journal of Microbiology, 42, 392400 Google Scholar
Meece, D.E. and Benninger, L.K. (1993) The coprecipitation of Pu and other radionuclides with CaCO3. Geochimica et Cosmochimica Acta, 57, 14471458 CrossRefGoogle Scholar
Miot, J., Benzerara, K., Morin, G., Kappler, A., Bernard, S., Obst, M., Ferard, C., Skouri-Panet, F., Guigner, J.M., Posth, N., Galvez, M., Brown, G.E. and Guyot, F. (2009) Iron biomineralization by anaerobic neutrophilic iron-oxidizing bacteria. Geochimica et Cosmochimica Acta, 73, 696711 CrossRefGoogle Scholar
Mitchell, A.C. and Ferris, F.G. (2006a) Effect of strontium contaminants upon the size and solubility of calcite crystals precipitated by the bacterial hydrolysis of urea. Environmental Science & Technology, 40, 10081014 CrossRefGoogle Scholar
Mitchell, A.C. and Ferris, F.G. (2006b) The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiology Journal, 23, 213226 CrossRefGoogle Scholar
Moon, H.S., Komlos, J. and Jaffe, P.R. (2009) Biogenic U(IV) oxidation by dissolved oxygen and nitrate in sediment after prolonged U(VI)/Fe(III)/SO42- reduction. Journal of Contaminant Hydrology, 105, 1827.CrossRefGoogle Scholar
Moore, R.C., Sanchez, C., Holt, K., Zhang, P.C., Xu, H.F. and Choppin, G.R. (2004) Formation of hydroxyapatite in soils using calcium citrate and sodium phosphate for control of strontium migration. Radiochimic. Acta, 92, 719723 Google Scholar
Morris, K. and Raiswell, R. (2002) Biogeochemical Cycles and Remobilisation of the Actinide Elements. Pp. 101-141 in: Interactions of Microorganisms with Radionuclides (M.J. Keith-Roach and F. Livens, editors). Radioactivity in the Environment, 2. Elsevier, Oxford UK.Google Scholar
Morris, K., Livens, F.R., Charnock, J.M., Burke, I.T., McBeth, J.M., Begg, J.D.C., Boothman, C. and Lloyd, J.R. (2008) An X-ray absorption study of the fate of technetium in reduced and reoxidized sediments and mineral phases . Applied. Geochemistry, 23, 603617 CrossRefGoogle Scholar
Moyes, L.N., Jones, M.J., Reed, W.A., Livens, F.R., Charnock, J.M., Mosselmans, J.F.W., Hennig, C., Vaughan, D.J. and Pattrick, R.A.D. (2002) An X-ray absorption spectroscopy study of neptunium(V) reactions with mackinawite (FeS). Environmental Science &. Technology, 36, 179183 CrossRefGoogle Scholar
Mulligan, C.N., Yong, R.N. and Fukue, M. (2009) Some effects of microbial activity on the evolution of claybased buffer properties in underground repositories. Applied Cla. Science, 42, 331335 Google Scholar
Myers, C.R. and Myers, J.M. (1992) Localization of cytochromes to the outer-membrane of anaerobically grown Shewanella putrefaciens MR-1. Journal of Bacteriology, 174, 34293438 CrossRefGoogle ScholarPubMed
Nealson, K.H. and Saffarini, D. (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annua. Review of Microbiology, 48, 311343 CrossRefGoogle Scholar
Nico, P.S., Stewart, B.D. and Fendorf, S. (2009) Incorporation of oxidized uranium into Fe (hydr)oxides during Fe(II) catalyzed remineralization. Environmental Science &. Technology, 43, 73917396 CrossRefGoogle Scholar
óLoughlin, E.J., Kelly, S.D. and Kemner, K.M. (2010) XAFS investigation of the interactions of UVI with secondary mineralization products from the bioreduction of FeIII oxides. Environmental Scienc. Technology, 44, 16561661 CrossRefGoogle Scholar
Ohnuki, T., Yoshida, T., Ozaki, T., Kozai, N., Sakamoto, F., Nankawa, T., Suzuki, Y. and Francis, A.J. (2007) Chemical speciation and association of plutonium with bacteria, kaolinite clay, and their mixture. Environmental Scienc. Technology, 41, 31343139 CrossRefGoogle Scholar
Ortiz-Bernad, I., Anderson, R.T., Vrionis, H.A. and Lovley, D.R. (2004) Resistance of solid-phase U(VI) to microbial reduction during in situ bioremediation of uranium-contaminated groundwater. Applied and Environmenta. Microbiology, 70, 75587560 Google Scholar
Parkman, R.H., Charnock, J.M., Livens, F.R. and Vaughan, D.J. (1998) A study of the interaction of strontium ions in aqueous solution with the surfaces of calcite and kaolinite. Geochimica et Cosmochimica Acta, 62, 14811492 CrossRefGoogle Scholar
Paterson-Beedle, M., Readman, J.E., Hriljac, J.A. and Macaskie, L.E. (2010) Biorecovery of uranium from aqueous solutions at the expense of phytic acid. Hydrometallurgy, 104, 524528 CrossRefGoogle Scholar
Pepper, S.E., Bunker, D.J., Bryan, N.D., Livens, F.R., Charnock, J.M., Pattrick, R.A.D. and Collison, D. (2003) Treatment of radioactive wastes: an X-ray absorption spectroscopy study of the reaction of technetium with green rust. Journal of Colloid and Interfac. Science, 268, 408412 Google Scholar
Peretyazhko, T., Zachara, J.M., Heald, S.M., Jeon, B.H., Kukkadapu, R.K., Liu, C., Moore, D. and Resch, C.T. (2008) Heterogeneous reduction of Tc(VII) by Fe(II) at the solid-water interface. Geochimica et Cosmochimica Acta, 72, 15211539 CrossRefGoogle Scholar
Plymale, A.E., Fredrickson, J.K., Zachara, J.M., Dohnalkova, A.C., Heald, S.M., Moore, D.A., Kennedy, D.W., Marshall, M.J., Wang, C.M., Resch, C.T. and Nachimuthu, P. (2011) Competitive reduction of pertechnetate (99TcO4 -) by dissimilatory metal reducing bacteria and biogenic Fe(II). Environmental Science &. Technology, 45, 951957 CrossRefGoogle Scholar
Powell, B.A., Fjeld, R.A., Kaplan, D.I., Coates, J.T. and Serkiz, S.M. (2005) Pu(V)O2 + adsorption and reduction by synthetic hematite and goethite. Environmental Science &. Technology, 39, 21072114 CrossRefGoogle Scholar
Powell, B.A., Duff, M.C., Kaplan, D.I., Fjeld, R.A., Newville, M., Hunter, D.B., Bertsch, P.M., Coates, J.T., Eng, P., Rivers, M.L., Sutton, S.R., Triay, I.R. and Vaniman, D.T. (2006) Plutonium oxidation and subsequent reduction by Mn(IV) minerals in Yucca Mountain tuff. Environmental Scienc. Technology, 40, 35083514 CrossRefGoogle Scholar
Reeder, R.J., Nugent, M., Lamble, G.M., Tait, C.D. and Morris, D.E. (2000) Uranyl incorporation into calcite and aragonite: XAFS and luminescence studies. Environmental Science &. Technology, 34, 638644 CrossRefGoogle Scholar
Renninger, N., Knopp, R., Nitsche, H., Clark, D.S. and Keasling, J.D. (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Applied and Environmenta. Microbiology, 70, 74047412 Google Scholar
Renshaw, J.C., Butchins, L.J.C., Livens, F.R., May, I., Charnock, J.M. and Lloyd, J.R. (2005) Bioreduction of uranium: environmental implications of a pentavalent intermediate. Environmental Scienc. Technology, 39, 56575660 CrossRefGoogle Scholar
Renshaw, J.C., Lloyd, J.R. and Livens, F.R. (2007) Microbial interactions with actinides and long-lived fission products. Comptes Rendu. Chimie, 10, 10671077 CrossRefGoogle Scholar
Renshaw, J.C., Law, N., Geissler, A., Livens, F.R. and Lloyd, J.R. (2009) Impact of the Fe(III)-reducing bacteria Geobacter sulfurreducens and Shewanella oneidensis on the speciation of plutonium. Biogeochemistry, 94, 191196 CrossRefGoogle Scholar
Renshaw, J.C., Handley-Sidhu, S. and Brookshaw, D.R. (2011) Pathways of radioactive substances in the environment. Pp. 152-176 in: Nuclear Power and the Environment (R.E. Hester and R.M. Harrison, editors)Hester and R.M Harrison Eds. Issues in Environmental Science and Technology vol. 32. Nuclear power and the environment. 152-176 RSC Cambridge. RSC Publishing, Cambridge, UK..CrossRefGoogle Scholar
Rod, K.A., Um, W. and Flury, M. (2010) Transport of strontium and cesium in simulated Hanford tank waste leachate through quartz sand under saturated and unsaturated flow. Environmental Science Technology, 44, 80898094 CrossRefGoogle ScholarPubMed
Roden, E.E., Leonardo, M.R. and Ferris, F.G. (2002) Immobilization of strontium during iron biomineralization coupled to dissimilatory hydrous ferric oxide reduction. Geochimica et Cosmochimica Acta, 66, 28232839 CrossRefGoogle Scholar
Runde, W. (2000) The chemical interactions of actinides in the environment. Los Alamo. Science, 26, 392411 Google Scholar
Sahai, N., Carroll, S.A., Roberts, S. and óDay, P.A. (2000) X-ray absorption spectroscopy of strontium(II) coordination - II. Sorption and precipitation at kaolinite, amorphous silica, and goethite surfaces. Journal of Colloid and Interfac. Science, 222, 198212 Google Scholar
Schmeide, K. and Bernhard, G. (2010) Sorption of Np(V) and Np(IV) onto kaolinite: effects of pH, ionic strength, carbonate and humic acid. Applie. Geochemistry, 25, 12381247 CrossRefGoogle Scholar
Schofield, E.J., Veeramani, H., Sharp, J.O., Suvorova, E., Bernier-Latmani, R., Mehta, A., Stahlman, J., Webb, S.M., Clark, D.L., Conradson, S.D., Ilton, E.S. and Bargar, J.R. (2008) Structure of biogenic uraninite produced by Shewanella oneidensis strain MR-1. Environmental Science &. Technology, 42, 78987904 CrossRefGoogle Scholar
Senko, J.M., Kelly, S.D., Dohnalkova, A.C., McDonough, J.T., Kemner, K.M. and Burgos, W.D. (2007) The effect of U(VI) bioreduction kinetics on subsequent reoxidation of biogenic U(IV). Geochimica et Cosmochimica Acta, 71, 46444654 CrossRefGoogle Scholar
Sharp, J.O., Schofield, E.J., Veeramani, H., Suvorova, E.I., Kennedy, D.W., Marshall, M.J., Mehta, A., Bargar, J.R. and Bernier-Latmani, R. (2009) Structural similarities between biogenic uraninites produced by phylogenetically and metabolically diverse bacteria. Environmental Scienc. Technology, 43, 82958301 CrossRefGoogle Scholar
Shaughnessy, D.A., Nitsche, H., Booth, C.H., Shuh, D.K., Waychunas, G.A., Wilson, R.E., Gill, H., Cantrell, K.J. and Serne, R.J. (2003) Molecular interfacial reactions between Pu(VI) and manganese oxide minerals manganite and hausmannite. Environmental Science &. Technology, 37, 33673374 CrossRefGoogle Scholar
Shelobolina, E.S., Konishi, H., Xu, H.F. and Roden, E.E. (2009) U(VI) sequestration in hydroxyapatite produced by microbial glycerol 3-phosphate metabolism. Applied and Environmenta. Microbiology, 75, 57735778 Google Scholar
Simonoff, M., Sergeant, C., Poulain, S. and Pravikoff, M.S. (2007) Microorganisms and migration of radionuclides in environment. Comptes Rendu. Chimie, 10, 10921107 CrossRefGoogle Scholar
Singer, D.M., Maher, K. and Brown, G.E. (2009) Uranyl-chlorite sorption/desorption: evaluation of different U(VI) sequestration processes. Geochimica et Cosmochimica Acta, 73, 59896007 CrossRefGoogle Scholar
Sivaswamy, V., Boyanov, M.I., Peyton, B.M, Viamajala, S., Gerlach, R., Apel, W.A., Sani, R.K, Dohnalkova, A., Kemner, K.M. and Borch, T. (2011) Multiple mechanisms of uranium immobilisation by Cellulomonas sp. strain ES6. Biotechnology an. Bioengineering, 108, 264276 Google Scholar
Skomurski, F.N., Rosso, K.M., Krupka, K.M. and McGrail, B.P. (2010) Technetium incorporation into hematite (a-Fe2O3). Environmental Scienc. Technology, 44, 58555861 CrossRefGoogle Scholar
Stewart, B.D., Mayes, M.A. and Fendorf, S. (2010) Impact of uranyl-calcium-carbonato complexes on uranium(VI) adsorption to synthetic and natural sediments. Environmental Science &. Technology, 44, 928934 CrossRefGoogle Scholar
Stewart, B.D., Nico, P.S. and Fendorf, S. (2009) Stability of uranium incorporated into Fe (hydr)oxides under fluctuating redox conditions. Environmental Science &. Technology, 43, 49224927 CrossRefGoogle Scholar
Tebo, B.M., Bargar, J.R., Clement, B.G., Dick, G.J., Murray, K.J., Parker, D., Verity, R. and Webb, S.M. (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annual Review of Earth and Planetar. Sciences, 32, 287328 Google Scholar
Tourney, J. and Ngwenya, B.T. (2009) Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology, 262, 138146 CrossRefGoogle Scholar
Um, W., Chang, H.S., Icenhower, J.P, Lukens, W.W., Serne, R.J., Qafoku, N.P., Westsik, J.H., Buck, E.C. and Smith, S.C. (2011) Immobilization of 99- Technetium(VII) by Fe(II) goethite and limited reoxidation. Environmental Science &. Technology, 45, 49044913 CrossRefGoogle Scholar
Uroz, S., Calvaruso, C., Turpault, M.P. and Frey-Klett, P. (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends i. Microbiology, 17, 378387 Google Scholar
van Hullebusch, E.D., Lens, P.N.L. and Tabak, H.H. (2005) Developments in bioremediation of soils and sediments polluted with metals and radionuclides. 3. Influence of chemical speciation and bioavailability on contaminants immobilization/mobilization bioprocesses. Reviews in Environmental Science an. Biotechnology, 4, 185212 Google Scholar
Vaughan, D.J. and Lloyd, J.R. (2011) Mineral–organic– microbe interactions: environmental impacts from molecular to macroscopic scales. Comptes Rendu. Geoscience, 343, 140159 CrossRefGoogle Scholar
Vaughan, D.J. and Lloyd, J.R. (2012) Mineral–organic– microbe interfacial chemistry. In: Fundamentals of Geobiology (A.H. Knoll, D.E. Canfield and K.O. Konhauser, editors). John Wiley & Sons, Chichester, UK.CrossRefGoogle Scholar
Veeramani, H., Schofield, E.J., Sharp, J.O., Suvorova, E.I., Ulrich, K.U., Mehta, A., Giammar, D.E., Bargar, J.R. and Bernier-Latmani, R. (2009) Effect of Mn(II) on the structure and reactivity of biogenic uraninite. Environmental Science &. Technology, 43, 65416547 CrossRefGoogle Scholar
Wall, J.D. and Krumholz, L.R. (2006) Uranium reduction. Annua. Review of Microbiology, 60, 149166 CrossRefGoogle Scholar
Warren, L.A., Maurice, P.A., Parmar, N. and Ferris, F.G. (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiolog. Journal, 18, 93115 Google Scholar
Waychunas, G.A., Kim, C.S. and Banfield, J.F. (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. Journal of Nanoparticl. Research, 7, 409433 Google Scholar
Webb, S.M., Fuller, C.C., Tebo, B.M. and Bargar, J.R. (2006) Determination of uranyl incorporation into biogenic manganese oxides using X-ray absorption spectroscopy and scattering. Environmental Scienc. Technology, 40, 771777 CrossRefGoogle Scholar
West, J.M., McKinley, I.G. and Stroes-Gascoyne, S. (2002) Microbial effects on waste repository materials. Pp. 255-278 in: Interactions of Microorganisms with Radionuclides (M.J. Keith- Roach and F. Livens, editors). Radioactivity in the Environment, 2. Elsevier, Oxford. UK.Google Scholar
Wildung, R.E., Gorby, Y.A., Krupka, K.M., Hess, N.J., Li, S.W., Plymale, A.E., McKinley, J.P. and Fredrickson, J.K. (2000) Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Applied and Environmental. Microbiology, 66, 24512460 Google Scholar
Wildung, R.E., Li, S.W., Murray, C.J., Krupka, K.M., Xie, Y., Hess, N.J. and Roden, E.E. (2004) Technetium reduction in sediments of a shallow aquifer exhibiting dissimilatory iron reduction potential. Fems Microbiolog. Ecology, 49, 151162 Google Scholar
Wilk, P.A., Shaughnessy, D.A., Wilson, R.E. and Nitsche, H. (2005) Interfacial interactions between Np(V) and manganese oxide minerals manganite and hausmannite. Environmental Science &. Technology, 39, 26082615 CrossRefGoogle Scholar
Wilkins, M.J., Livens, F.R., Vaughan, D.J. and Lloyd, J.R. (2006) The impact of Fe(III)-reducing bacteria on uranium mobility. Biogeochemistry, 78, 125150 CrossRefGoogle Scholar
Wilkins, M.J., Livens, F.R., Vaughan, D.J., Beadle, I. and Lloyd, J.R. (2007) The influence of microbial redox cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site. Geobiology, 5, 293301 CrossRefGoogle Scholar
Wu, S.J., Chen, F.R., Simonetti, A. and Albrecht- Schmitt, T.E. (2010) Incorporation of neptunium(V) and iodate into a uranyl phosphate: implications for mitigating the release of 237Np and 129I in repositories. Environmental Science &. Technology, 44, 31923196 CrossRefGoogle Scholar
Yong, P., Macaskie, L.E., Sammons, R.L. and Marquis, P.M. (2004) Synthesis of nanophase hydroxyapatite by a Serratia sp. from waste-water containing inorganic phosphate. Biotechnolog. Letters, 26, 17231730 Google Scholar
Zachara, J.M., Serne, J., Freshley, M., Mann, F., Anderson, F., Wood, M., Jones, T. and Myers, D. (2007) Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone. Vadose Zon. Journal, 6, 9851003 Google Scholar
Zavarin, M., Roberts, S.K., Hakem, N., Sawvel, A.M. and Kersting, A.B. (2005) Eu(III), Sm(III), Np(V), Pu(U), and Pu(IV) sorption to calcite. Radiochimic. Acta, 93, 93102 Google Scholar
Zhang, G.X., Burgos, W.D., Senko, J.M, Bishop, M.E., Dong, H.L., Boyanov, M.I. and Kemner, K.M. (2011) Microbial reduction of chlorite and uranium followed by air oxidation. Chemical Geology, 283, 242250 CrossRefGoogle Scholar