Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T22:40:24.425Z Has data issue: false hasContentIssue false

Meisserite, Na5(UO2)(SO4)3(SO3OH)(H2O), a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah, USA

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ–182 21, Prague 8, Czech Republic
A. R. Kampf
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
A. V. Kasatkin
Affiliation:
V/O “Almazjuvelirexport”, Ostozhenka Street, 22, block 1, 119034 Moscow, Russia
J. Marty
Affiliation:
5199 East Silver Oak Road, Salt Lake City, UT 84108, USA
R. Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
S. Silva
Affiliation:
USGS, 345 Middlefield Road, MS 434, Menlo Park CA 94025, USA
J. Čejka
Affiliation:
Department ofMineralogy and Petrology, NationalMuseum, Cirkusová 1740, CZ–193 00, Prague 9, Czech Republic
*

Abstract

Meisserite (IMA2013-039), Na5(UO2)(SO4)3(SO3OH)(H2O), is a new uranyl sulfate mineral from the Blue Lizard mine, San Juan County, Utah (USA). It is named in honour of the prominent Swiss mineralogist Nicolas Meisser. The new mineral was found in a sandstone matrix and is associated with chalcanthite, copiapite, ferrinatrite, gypsum, johannite and another new Na-bearing uranyl sulfate, belakovskiite (IMA2013-075). Meisserite is a secondary mineral formed by the post-mining weathering of uraninite. The mineral is triclinic, P, a = 5.32317(10), b = 11.5105(2), c = 13.5562(10) Å, α = 102.864(7)°, β = 97.414(7)°, γ = 91.461(6)°, V = 801.74(6) Å3, and Z = 2. Crystals are prisms elongated on [100], up to 0.3 mm long, exhibiting the forms {010} and {001}. Meisserite is pale green to yellowish green, translucent to transparent and has a very pale yellow streak. It is brittle, with fair cleavage on {100} and {001}, and uneven fracture. The Mohs hardness is estimated at 2. Meisserite is somewhat hygroscopic and easily soluble in water. The calculated density based on the empirical formula is 3.208 g/cm3. Meisserite exhibits bright yellow green fluorescence under both long- and shortwave UV radiation. The mineral is optically biaxial (–), with α = 1.514(1), β = 1.546(1), γ = 1.557(1) (measured in white light). The measured 2V is 60(2)° and the calculated 2V is 60°. Dispersion is r > v, perceptible, and the optical orientation is Xa, Zc*. The mineral is pleochroic, with X (colourless) < Y (pale yellow) ≈ Z (pale greenish yellow). The empirical formula of meisserite (based on 19 O a.p.f.u.) is Na5.05(U0.94O2)(SO4)3[SO2.69(OH)1.31](H2O). The Raman spectrum is dominated by the symmetric stretching vibrations of UO22+, SO42– and also weaker O–H stretching vibrations. The eight strongest powder X-ray diffraction lines are [dobs in Å (hkl)Irel]: 13.15 (001) 81, 6.33 (02) 62, 5.64 (01,020) 52, 5.24 (100,012,01) 100, 4.67 (101) 68, 3.849 (1,102,022) 48, 3.614 (02,3) 41, and 3.293 (13,004) 43. The crystal structure of meisserite (R1 = 0.018 for 3306 reflections with Iobs > 3σI) is topologically unique among known structures of uranyl minerals and inorganic compounds. It contains uranyl pentagonal bipyramids linked by SO4 groups to form chains. Na+ cations bond to O atoms in the chains and to an SO3OH group and an H2>O group between the chains, thereby forming a heteropolyhedral framework.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ankinovich, E.A., Bekenova, G.K., Shabanova, T.A., Zazubina, I.S. and Sandomirksaya, S.M. (1997) Mitryaevaite, Al10[(PO4)8.7(SO3OH)1.3]S10 AlF3·30H2O, a new mineral species from a Cambrian carbonaceous chert formation, Karatau Range and Zhabagly Mountains, southern Kazakhstan. The Canadian Mineralogist, 35, 14151419.Google Scholar
Baran, J., Ilczyszyn, M.M., Marchewka, M.K. and Ratajczak, H., (1999) Vibrational studies of different modifications of the sodium hydrogen sulphate crystals. Spectroscopy Letters, 32, 83102.CrossRefGoogle Scholar
Bartlett, J.R. and Cooney, R.P. (1989) On the determination of uranium-oxygen bond lengths in dioxouranium(VI) compounds by Raman spectroscopy. Journal of Molecular Structure, 193, 295300.CrossRefGoogle Scholar
Blakey, R.C. and Gubitosa, R., (1984) Controls of sandstone body geometry and architecture in the Chinle Formation (Upper Triassic), Colorado Plateau. Sedimentary Geology, 38, 14. 5186.CrossRefGoogle Scholar
Brown, I.D. (1981) The bond-valence method: an empirical approach to chemical structure and bonding. Pp. 130. in: Structure and Bonding in Crystals II (M. O’Keeffe and A. Navrotsky, editors). Academic Press, New York.Google Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, UK.Google Scholar
Brown, I.D. and Altermatt, D., (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244247. with updated parameters from http://www.ccp14.ac.uk/ccp/ web-mirrors/i_d_brown/.CrossRefGoogle Scholar
Brugger, J., Burns, P.C. and Meisser, N., (2003) Contribution to the mineralogy of acid drainage of uranium minerals: marécottite and the zippeite group. American Mineralogist, 88, 676685.CrossRefGoogle Scholar
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G., and Spagna, R., (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381388.CrossRefGoogle Scholar
Burns, P.C. and Hayden, L.A. (2002) A uranyl sulfate cluster in Na10[(UO2)(SO4)4](SO4)2·3H2O. Acta Crystallographica, C58, i121–i123.Google Scholar
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedron geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.Google Scholar
Burns, P.C., Deely, K.M. and Hayden, L.A. (2003) The crystal chemistry of the zippeite group. The Canadian Mineralogist, 41, 687706.CrossRefGoogle Scholar
Cahill, C.L., Krivovichev, S.V., Burns, P.C., Bekenova, G.K. and Shabanova, T.A. (2001) The crystal structure of mitryaevaite , Al 5(PO4 ) 2 [(P,S)O3(OH,O)]2F2(OH)2(H2O)8·6.48H2O, determined from a microcrystal using synchrotron radiation. The Canadian Mineralogist, 39, 179186.CrossRefGoogle Scholar
Catti, M., Ferraris, G., and Franchini-Angela, M. (1975) Hydrogen bonding in the crystalline state. NaHSO4.H2O (matteuccite), a pseudsymmetric crystal structure. Atti Accad Sci Torino Fis Matem Natur, 109, 531545.Google Scholar
Edwards, K.J., Bond, P.L., Druschel, G.K., McGuire, M.M., Hamers, R.J. and Banfield, J.F. (2000) Geochemical and biological aspects of sulfide mineral dissolution: lessons from Iron Mountain, California. Chemical Geology, 169, 383397.CrossRefGoogle Scholar
Evangelou, V.P. and Zhang, Y.L. (1995) A review – pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Sciences and Technology, 25, 141199.CrossRefGoogle Scholar
Frondel, C., Ito, J., Honea, R.M. and Weeks, A.M. (1976) Mineralogy of the zippeite group. The Canadian Mineralogist, 14, 429436.Google Scholar
Haile, S.M., Calkins, P.M. and Boysen, D., (1998) Structure and vibrational spectrum of beta- Cs3(HSO4)2[H(2-x)(P1-x,Sx)O4] (x ~ 0.5), a new superprotonic conductor, and a comparison with alpha-Cs3(HSO4)2(H2PO4). Journal of Solid State Chemistry, 139, 373387.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112. in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America and Geochemical Society, Washington DC.Google Scholar
Hayden, L.A. and Burns, P.C. (2002a) The sharing of an edge between a uranyl pentagonal bipyramid and sulfate tetrahedron in the structure of KNa5[(UO2)(SO4 ) 4](H2O). The Canadian Mineralogist, 40, 211216.CrossRefGoogle Scholar
Hayden, L.A. and Burns, P.C. (2002b) A novel uranyl sulfate cluster in the structure of Na6(UO2) (SO4)4(H2O)2 . Journal of Solid State Chemistry, 163, 313318.CrossRefGoogle Scholar
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo, Japan.Google Scholar
Jambor, J.L., Nordstrom, D.K. and Alpers, C.N. (2000) Metal-sulfate salts from sulfide mineral oxidation. Pp. 303350. in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40, Mineralogical Society of America and Geochemical Society, Washington DC.Google Scholar
Kasatkin, A.V., Nestola, F., Plášil, J., Marty, J., Belakovskiy, D.I., Agakhanov, A.A., Mills, S.J., Pedron, D., Lanza, A., Favaro, M., Bianchin, S., Lykova, I.S., Goliáš, V. and Birch, W.D. (2013) Manganoblö dite, Na2Mn(SO4)2·4H2O, and cobaltoblö dite, Na2Co(SO4)2·4H2O: two new members of the blö dite group from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 77, 367383.CrossRefGoogle Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and crystallography of uranium. Mineralogical Association of Canada Short Course, 43, Winnipeg, Manitoba, May 2013, p. 15119.Google Scholar
Leclaire, A., Ledesert, M., Monier, J.C., Daoud, A., and Damak, M., (1985) Structure du disulfate acide de triammonium. Une redetermination. Relations des chaines de liaisons hydrogene avec la morphologie et la conductivite eletrique. Acta Crystallographica, B41, 209213.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H...O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N., and Burns, P.C. (2010) Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/ selenate 1D-chain, 2D-sheet and 3D framework. Zeitschrift für Kristallographie, 225, 230239.Google Scholar
Oszlányi, G. and Süto, A. (2004) Ab-initio structure solution by charge flipping. Acta Crystallographica, A60, 134141.CrossRefGoogle Scholar
Oszlányi, G. and Süto, A. (2008) The charge flipping algorithm. Acta Crystallographica, A64, 123134.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge-flipping algorithm in crystallography. Acta Crystallographica, B69, 116.Google Scholar
Palatinus, L. and Chapuis, G., (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Payan, F. and Haser, R., (1976) On the hydrogen bonding in potassium hydrogen sulphate. Comparison with a previous crystal structure determination. Acta Crystallographica, B32, 18751879.CrossRefGoogle Scholar
Periasamy, A., Muruganand, S., and Palaniswamy, M., (2009) Vibrational studies of Na2SO4 , K2SO4, NaHSO4 and KHSO4 crystals. Rasayan Journal of Chemistry, 2, 981989.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L., (2006) Jana2006. The crystallographic computing system. Institute of Physics, Prague.Google Scholar
Plášil, J., Hloušek, J., Veselovský, F., Fejfarová, K., Dušek, M., Škoda, R., Novák, M., Čejka, J., Sejkora, J., and Ondruš, P. (2012a) Adolfpateraite, K(UO2)(SO4)(OH)(H2O), a new uranyl sulfate mineral from Jáchymov, Czech Republic. American Mineralogist, 97, 447454.CrossRefGoogle Scholar
Plášil, J., Fejfarová, K., Wallwork, K.S., Dušek, M., Škoda, R., Sejkora, J., Čejka, J., Veselovský, F., Hloušek, J., Meisser, N., and Brugger, J., (2012b) Crystal structure of pseudojohannite, with a revised formula, Cu3(OH)2[(UO2)4O4(SO4)2](H2O)12 . American Mineralogist, 97, 17961803.CrossRefGoogle Scholar
Plášil, J., Veselovský , F., Hloušek, J., Škoda, R., Novák, M., Sejkora, J., Čejka, J., Škácha, P. and Kasatkin, A.V (2013) Mathesiusite, IMA 2013-046. CNMNC Newsletter No. 17, October 2013, page 3001; Mineralogical Magazine, 77, 29973005.Google Scholar
Pouchou, J.L. and Pichoir, F., (1985) “PAP” (j rZ) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Schindler, M., Durocher, J.L., Kotzer, T.G. and Hawthorne, F.C. (2012): Uranium-bearing phases in a U-mill disposal site in Northern Canada: Products of the interaction between leachate/raffinate and tailings material. Applied Geochemistry, 29, 151161.CrossRefGoogle Scholar
Sieber, H. (1966) Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Stefaniak, E.A., Alsecz, A., Frost, R., Mathe, Z., Sajo, I.E., Torok, S., Worobiec, A., and Van Grieken, R. (2009) Combined SEM/EDX and micro-Raman spectroscopy analysis of uranium minerals from a former uranium mine. Journal of Hazardous Materials, 168, 416423.CrossRefGoogle ScholarPubMed
Thaden, R.E., Trites, A.F., Jr. and Finnell, T.L. (1964) Geology and Ore deposits of the White Canyon Area San Juan and Garfield Counties, Utah. Geological Survey Bulletin, 1125.Google Scholar
Vchirawongkwin, V., Kritayakornupong, C., and Rode, B.M. (2010) Structural and dynamical properties and vibrational spectra of bisulfate ion in water: A study of ab-initio quantum mechanical charge field molecular dynamics. Journal of Physical Chemistry, B2010, 1156111569.CrossRefGoogle Scholar
Supplementary material: File

Plášil et al. supplementary material

CIF

Download Plášil et al. supplementary material(File)
File 180.2 KB
Supplementary material: File

Plášil et al. supplementary material

Structure factors

Download Plášil et al. supplementary material(File)
File 156.9 KB