Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-24T14:09:08.919Z Has data issue: false hasContentIssue false

Manganoan fayalite and products of its alteration from the Strzegom pegmatites, Poland

Published online by Cambridge University Press:  05 July 2018

J. Janeczek*
Affiliation:
Department of Earth Sciences, Silesian University, Mielczarskiego 60, 41–200 Sosnowiec, Poland

Abstract

Nodules of manganoan fayalite occur in schlieren pegmatities in the vicinity of Strzegom, Lower Silesia. The fayalite, Na0.02(Fe1.812+Mn0.16Mg 0.03)Si0.99O4, is unzoned and non pleochroic. 2Va = 42° a 4.826(3), b 10.500(2), c 6.102(2) A, d130obs. = 2.83 Å, d130calc. = 2.833 Å, D = 4.35 g cm-3, Dcalc. = 4.353 g cm-3. The role of Na+ ions in the fayalite chemistry is discussed. The fayalite underwent multi-stage hydrothermal alteration beginning at the highest temperature (440°C) of homogenization of gaseous-fluid inclusions in quartz adjacent to the fayalite grains. Increase in fO2 and then in PH2O resulted in the formation of magnetite-quartz and Mn-grunerite-magnetite-quartz aggregates within the fayalite grains. The fayalite is mantled by a Mn-greenalite-magnetite rim, Mn-grunerite-magnetite-Mn-minnesotaite zone in a stilpnomelane or greenalite-rich groundmass. The minnesotaite is believed to have formed at the expense of grunerite. Stilpnomelane, the most abundant silicate phase in the rim, is the product of biotite and presumably greenalite alteration at the second stage of increasing Na activity (the crystallization of cleavelandite) in the pegmatites. The fayalite is also heavily altered to iddingsite—a composite mixture of amorphous FeOOH and silica. The iron-hydroxide recrystallized partially to poorly-crystalline goethite.

Type
Silicate Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annersten, H., Adeunji, J., and Filipides, A. (1984) Am. Mineral. 69, 1110-15.Google Scholar
Baker, I., and Haggerty, S. E. (1967) Contrib. Mineral. Petrol. 16, 258-73.CrossRefGoogle Scholar
Blake, R. L. (1965) Am. Mineral. 50, 148.Google Scholar
Deer, W. A., Howie, R., and Zussman, J. (1982) Rock-forming minerals, 1A, Orthosilicates. (Longmans) London.Google Scholar
Eggleton, R. A. (1972) Mineral. Mag. 38, 639-711.CrossRefGoogle Scholar
Eggleton, R. A. and Chappell, B. W. (1978) Ibid. 42,361-8.Google Scholar
Floran, R. J., and Papike, J. J. (1975) Geol. Soc. Am. Bull. 86, 1169-902.0.CO;2>CrossRefGoogle Scholar
Forbes, W. C. (1977) Am. J. Sci. 277, 735-49.CrossRefGoogle Scholar
Frish, T. (1972) Can. Mineral. 11, 552-3.Google Scholar
Ginzburg, I. W., Lisitsina, G. A., Sadikova, A. T., and Sidorenko, G. A. (1961) Trudy Min. Muzea. 13, 16-42.Google Scholar
Guggenheim, S., Bailey, S. W., Eggleton, R. A., and Wilkes, P. (1982) Can. Mineral. 20, 1-18.Google Scholar
Janeczek, J. (1985) Geol. Sudetica. 20, 2, 1-82.Google Scholar
Klein, C. Jr. (1974) Can. Mineral. 12, 475-98.Google Scholar
Lenkowski, W. (1983) Arch. Mineral. 39, 53-66.Google Scholar
Majerowicz, A. (1972) Geol. Sudetica. 6, 7-96.Google Scholar
Miller, M. L., and Ribbe, P. H. (1985) Am. Mineral. 70, 723-8.Google Scholar
Miyano, T., and Klein, C. (1983) Ibid. 68, 699-716.Google Scholar
Nowakowski, A., and Koz∼owski, A. (1983) Arch. Mineral. 39, 5-16.Google Scholar
Puziewicz, J. (1985) Neues Jahrb. Mineral. Abh. 153, 19-31.Google Scholar
Sachanbifiski, M., and Janeczek, J. (1977) Mineral. Polonica. 8, 3-14.Google Scholar
Wones, D. R., and Gilbert, M. C. (1969) Am. J. Sci. 267-A, 480-8.Google Scholar
Wones, D. R., and Gilbert, M. C. (1982) Amphiboles in the igneous environment. In. Amphiboles: petrology and experimental phase relations. Reviews in mineralogy, 9B, Mineral. Soc. America.CrossRefGoogle Scholar