Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-18T01:50:55.510Z Has data issue: false hasContentIssue false

Magma chamber evolution of the Ardestan pluton, Central Iran: evidence from mineral chemistry, zircon composition and crystal size distribution

Published online by Cambridge University Press:  01 July 2019

Shahrouz Babazadeh
Affiliation:
Research Institute for Earth Sciences, Geological Survey of Iran, Tehran13185-1494, Iran
Tanya Furman*
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, PA16802, USA
John M. Cottle
Affiliation:
Department of Earth Science University of California, Santa Barbara, CA93106-9630, USA
Davood Raeisi
Affiliation:
Department of Geology, Faculty of Sciences, University of Tehran, Tehran, 14155-64155, Iran
Ianna Lima
Affiliation:
Department of Geosciences, Pennsylvania State University, University Park, PA16802, USA Department of Geosciences, Federal University of Mato Grosso, Cuiabá, Brazil
*
*Author for correspondence: Tanya Furman, Email: [email protected]

Abstract

The Oligo–Miocene Ardestan quartz diorite to tonalite is part of widespread Cenozoic magmatism within the Urumieh–Dokhtar Magmatic Assemblage of Iran. The Ardestan pluton is composed mainly of varying proportions of plagioclase feldspar (normally zoned from bytownite to andesine), amphibole (magnesio-hornblende) and biotite. Biotite exhibits a range of Al values (~2–2.8 apfu) over very restricted Fe# ratios (0.42–0.56) which are characteristic of continental arc magmatic suites. High Ti2O contents of biotite (<6.1 wt.%) suggest a magmatic origin. Ti-in-biotite geothermometery gives a mean crystallisation temperature of 730 ± 56°C, slightly higher than calculated TZr.Ti°C (716 ± 50°C) and similar to the average TZr.sat°C (735 ± 26°C). These results are consistent with the low bulk-rock SiO2 contents, which provide minimum estimates of temperature and indicate zircon crystallised from a fractionated magma. Zircons from the Ardestan pluton have high (Sm/La)N (>10) ratios suggesting a magmatic origin. T$f_{{\rm O}_{\rm 2}}$ calculations of oxygen fugacity between –13.6 to –16.9 indicate oxidising crystallisation conditions between the Ni–NiO (NNO) and Fe2O3–Fe3O4 (HM) buffers. Tight linear trends of log (XF/XOH), log (XCl/XOH) and log (XCl/XOH) vs. XMg represent a narrow range of $f_{{\rm H}_2O}$, fHF and fHCl, clearly indicating that physico-chemical conditions were essentially constant throughout the formation of magmatic biotite. The shape of crystal size distribution curves along with the medium Al and Mg contents in amphibole and biotite, respectively, are consistent with a history of magma mixing involving injections of basic magma into the evolving felsic chamber. Calculated residence time for Ardestan plagioclase crystals of ~630 years support field evidence that these plutons were emplaced at shallow depths.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Coulson

References

Abbott, R.N. Jr. and Clarke, D.B. (1979) Hypothetical liquidus relationships in the subsystem Al2O3–FeO–MgO projected from quartz, alkali feldspar and plagioclase for a(H2O) <1. The Canadian Mineralogist, 17, 549560.Google Scholar
Afshooni, Z., Mirnejad, M., Esmaeily, D. and Asadi Haroni, H. (2013) Mineral chemistry of hydrothermal biotite from the Kahang porphyry copper deposit (NE Isfahan), Central Province of Iran. Ore Geology Reviews, 54, 214232.CrossRefGoogle Scholar
Agard, P., Omrani, J., Jolivet, J., Whitechurch, H., Vrielynck, B., Spakman, W., Monié, P., Meyer, B. and Wortel, R. (2011) Zagros orogeny: A subduction-dominated process. Geological Magazine, 148, 692725.CrossRefGoogle Scholar
Ague, J.J. and Brimhall, G.H. (1988) Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, 891911.2.3.CO;2>CrossRefGoogle Scholar
Alavi, M. (1996) Tectonostratigraphic synthesis and structural style of the Alborz Mountain system in northern Iran. Journal of Geodynamics, 21, 133.CrossRefGoogle Scholar
Alavi, M. (2004) Regional stratigraphy of the Zagros folded-thrust belt of Iran and its proforeland evolution. American Journal of Science, 304, 120.CrossRefGoogle Scholar
Alirezaei, S. and Hassanzadeh, J. (2012) Geochemistry and zircon geochronology of the Permian A-type Hasanrobat granite, Sanandaj–Sirjan belt: A new record of the Gondwana break-up in Iran. Lithos, 151, 122134.CrossRefGoogle Scholar
Amidi, S.M. (1975) Contribution a Letude Stratigraphique, Petrologique, et Petrochimique des Roches Magmatiques de la Region de Natanz– Nain– Surk (Iran, Central). PhD dissertation, Grenoble.Google Scholar
Anderson, J.L. and Smith, D.R. (1995) The effects of temperature and $f_{{\rm O}_{\rm 2}}$ on the Al-in-hornblende barometer. American Mineralogist, 80, 549559.CrossRefGoogle Scholar
Anderson, J.L., Barth, A.P. and Mazdab, J.L.W.F. (2008) Thermometers and thermobarometers in granitic systems. Pp. 121142 in: Minerals, Inclusions and Volcanic Processes (Putirka, K.D. and Tepley, F.J. III, editors). Reviews of Mineralogy and Geochemistry, 69. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Azizi, H., Beiranvand, M.Z. and Asahara, Y. (2015) Zircon U–Pb ages and petrogenesis of a tonalite–trondhjemite–granodiorite (TTG) complex in the northern Sanandaj–Sirjan zone, northwest Iran: Evidence for Late Jurassic arc-continent collision. Lithos, 216–217, 178195.CrossRefGoogle Scholar
Babazadeh, S., Ghorbani, M.R., Bröcker, M., D'Antonio, M., Cottle, J., Gebbing, T., Mazzeo, F.C. and Ahmadi, P. (2017) Late Oligocene–Miocene mantle upwelling and interaction inferred from mantle signatures in gabbroic to granitic rocks from the Urumieh–Dokhtar arc, south Ardestan, Iran. International Geology Review, 59, 15901608.CrossRefGoogle Scholar
Babazadeh, S., Ghorbani, M.R., Cottle, J.M. and Bröcker, M. (2019). Multi-stage tectono-magmatic evolution of the central Urumieh–Dokhtar magmatic arc, south Ardestan, Iran: Insights from zircon geochronology and geochemistry. Geological Journal, 54, 24472471.CrossRefGoogle Scholar
Batchelor, R.A. and Bowden, P. (1985) Petrogenetic interpretation of granitoid rock series using multicationic parameters. Chemical Geology, 48, 4355.CrossRefGoogle Scholar
Bea, F., Mazhari, A., Montero, P., Amini, S. and Ghalamghash, J. (2011) Zircon dating, Sr and Nd isotopes, and element geochemistry of the Khalifan pluton, NW Iran: evidence for Variscan magmatism in a supposedly Cimmerian superterrane. Journal of Asian Earth Sciences, 40, 172179.CrossRefGoogle Scholar
Berberian, F. and Berberian, M. (1981) Tectono-plutonic episodes in Iran. In: Zagros, Hindukosh, Himalaya Geodynamic Evolution (H.K. Gupta and F.M. Delany, editors). American Geophysical Union, Washington DC, 5–32.CrossRefGoogle Scholar
Berberian, M. and King, G.C.P (1981) Towards a palaeogeography and tectonic evolution of Iran. Canadian Journal of Earth Sciences, 18, 210265.CrossRefGoogle Scholar
Beygi, S., Nadimi, A. and Safaei, H. (2016) Tectonic history of seismogenic fault structures in Central Iran. Journal of Geosciences, 61, 127144.CrossRefGoogle Scholar
Boehnke, P., Watson, E.B., Trail, D., Harrison, T.M. and Schmitt, A.K. (2013) Zircon saturation re-revisited. Chemical Geology, 351, 324334.CrossRefGoogle Scholar
Boomeri, M., Nakashima, K. and Lentz, D.R. (2009) The Miduk porphyry Cu deposit, Kerman, Iran: A geochemical analysis of the potassic zone including halogen element systematics related to Cu mineralization processes. Journal of Geochemical Exploration, 103, 1729.CrossRefGoogle Scholar
Boomeri, M., Nakashima, K. and Lentz, D.R. (2010) The Sarcheshmeh chemical composition of biotite porphyry copper deposit, Kerman, Iran: A mineralogical analysis of the igneous rocks and alteration zones including halogen element systematic related to Cu mineralization processes. Ore Geology Review, 38, 367–81.CrossRefGoogle Scholar
Brimhall, G.H. and Crerar, D.A. (1987) Ore fluids: magmatic to supergene. Pp. 235321 in: Thermodynamic Modeling of Geological Materials: Minerals, Fluids and Melts (Carmichael, I. and Eugster, H., editors). Reviews in Mineralogy, 17. Mineralogical Society of America, Washington DC.CrossRefGoogle Scholar
Bulgariu, D. (2002) The separation and the concentration of minerals from the zeolitic volcanic tuffs. Analytical considerations. Studia Universitatis Babeş–Bolyai, Geologia, 47, 4151.CrossRefGoogle Scholar
Cashman, K.V. and Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization II: Makaopuhi Lava Lake. Contributions to Mineralogy and Petrology, 99, 292305.CrossRefGoogle Scholar
Cashman, K.V. (1993) Relationship between plagioclase crystallization and cooling rate in basaltic melts. Contributions to Mineralogy and Petrology, 113, 126142.CrossRefGoogle Scholar
Castro, J.M., Cashman, K.V. and Manga, M. (2003) A technique for measuring 3D crystal–size distributions of prismatic microlites in obsidian. American Mineralogist, 88, 12301240.CrossRefGoogle Scholar
Chappell, B.W. and White, A.J.R. (1974) Two contrasting granite types. Pacific Geology, 8, 173174.Google Scholar
Chappell, B.W. and White., A.J.R. (2001) Two contrasting granite types, 25 years later. Australian Journal of Earth Sciences, 48, 489499.CrossRefGoogle Scholar
Charlier, B.L.A., Wilson, C.J.N., Lowenstern, J.B., Blake, S., Van Calsteren, P.W. and Davidson, J.P. (2005) Magma generation at a large, hyperactive silicic volcano (Taupo, New Zealand) revealed by U–Th and U–Pb systematics in zircons. Journal of Petrology, 46, 332.CrossRefGoogle Scholar
Chiu, H. Y., Chung, S.L., Zarrinkoub, M.H., Mohammadi, S.S., Khatib, M.M. and Iizuka, Y. (2013). Zircon U–Pb age constraints from Iran on the magmatic evolution related to Neotethyan subduction and Zagros orogeny. Lithos, 162, 7087.CrossRefGoogle Scholar
Coltorti, M., BonaDiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y. and Powell, W. (2007) Amphiboles from suprasubduction and intraplate lithospheric mantle. Lithos, 99, 6884.CrossRefGoogle Scholar
Cottle, J.M., Waters, D.J., Riley, D., Beyssac, O. and Jessup, M.J. (2011) Metamorphic history of the South Tibetan detachment system, Mt. Everest region, revealed by RSCM thermometry and phase equilibria modeling. Journal of Metamorphic Geology, 29, 561582.CrossRefGoogle Scholar
Cottle, J.M., Burrows, A.J., Kylander-Clark, A., Freedman, P.A. and Cohen, R.S. (2013) Enhanced sensitivity in laser ablation multi-collector inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 28, 17001706.CrossRefGoogle Scholar
De La Roche, H., Leterrier, J., Grande Claude, P. and Marchal, M. (1980) A classification of volcanic and plutonic rocks using R1–R2 diagrams and major element analyses – its relationship and current nomenclature. Chemical Geology, 29, 183210.CrossRefGoogle Scholar
Enami, M., Suzuki, K., Liou, J.G. and Bird, D.K. (1993) Al–Fe3+ and F–OH substitutions in titanite and constraints on their P–T dependence. European Journal of Mineralogy, 5, 219231.CrossRefGoogle Scholar
Ferry, J. and Watson, E. (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429437.CrossRefGoogle Scholar
Foden, J.D., Turner, S.P., Sandiford, M., Mitchell, S., Elliot, V.H.–P., Bay, E., Valley, W.M. and Hill, B. (2002) Granite production in the Delamerian Orogen, South Australia. Journal of the Geological Society, London, 159, 557575.CrossRefGoogle Scholar
Foden, J., Sossi, A.P. and Wawryk, C.M. (2015) Fe isotopes and the contrasting petrogenesis of A-, I- and S-type granite. Lithos, 212, 3244.CrossRefGoogle Scholar
Foster, M.D. (1960) Interpretation of composition of trioctahedral micas. US Geological Survey, Professional Paper 354B, 149.Google Scholar
Fu, B., Mernagh, T.P., Kita, N.T., Kemp, A.I.S. and Valley, J.W. (2009) Distinguishing magmatic zircon from hydrothermal zircon: a case study from the Gidginbung highsulphidation Au–Ag–(Cu) deposit, SE Australia. Chemical Geology, 259, 131142.CrossRefGoogle Scholar
Garrido, C.J., Kelemen, P.B. and Hirth, G. (2001) Variation of cooling rate with depth in lower crust formed at an oceanic spreading ridge: Plagioclase crystal size distributions in gabbros from the Oman ophiolite. Geochemistry, Geophysics, Geosystems, 2, https://doi.org/10.1029/2000GC000136.CrossRefGoogle Scholar
Gervasoni, F., Klemme, S., Rocha-Jönior, E.R.V. and Berndt, J. (2016) Zircon saturation in silicate melts: a new and improved model for aluminous and alkaline melts. Contributions to Mineralogy and Petrology, 171, 112.CrossRefGoogle Scholar
Green, T.H. and Watson, E.B. (1982) Crystallization of apatite in natural magmas orogenic rock series. Contributions to Mineralogy and Petrology, 79, 96105.CrossRefGoogle Scholar
Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K. and Schwartz, J.J. (2007) Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35, 643646.CrossRefGoogle Scholar
Hammarstrom, J.M. and Zen, E. (1986) Aluminum in hornblende: an empirical igneous geobarometer. American Mineralogist, 71, 12971313.Google Scholar
Hanchar, J.M. and Watson, E.B. (2003) Zircon saturation thermometry. Pp. 89112 in: Zircon (Hanchar, J.M. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Harrison, T.M. and Schmitt, A.K. (2007) High sensitivity mapping of Ti distributions in Hadean zircons. Earth and Planetary Science Letters, 261, 919.CrossRefGoogle Scholar
Harrison, T.M., Watson, E.B. and Aikman, A.M. (2007) Temperature spectra of zircon crystallization in plutonic rocks. Geology, 35, 635638.CrossRefGoogle Scholar
Helmy, H.M., Ahmed, A.F., El Mahallawi, M.M. and Ali, S.M. (2004) Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. Journal of African Earth Science, 38, 255268.CrossRefGoogle Scholar
Henry, D.J., Guidotti, C.V. and Thomson, J.A. (2005) The Ti-saturation surface for low to medium pressure metapelitic biotite: implications for geothermometry and Ti-substitution mechanisms. American Mineralogist, 90, 316328.CrossRefGoogle Scholar
Hiess, J., Nutman, A.P., Bennett, V.C. and Holden, P. (2008) Ti-in-zircon thermometry applied to contrasting Archean metamorphic and igneous systems. Chemical Geology, 247, 323338.CrossRefGoogle Scholar
Higgins, M.D. (2002) Closure in crystal size distributions (CSD), verification of CSD calculations, and the significance of CSD fans. American Mineralogist, 87, 171175.CrossRefGoogle Scholar
Higgins, M.D. (2006) Quantitative Textural Measurements in Igneous and Metamorphic Petrology. Cambridge University Press, UK.CrossRefGoogle Scholar
Hollister, L.S., Grissom, G.C., Peters, E.K., Stowell, H.H. and Sisson, V.B. (1987) Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. American Mineralogist, 72, 231239.Google Scholar
Hoskin, P.W.O. (2005) Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69, 637648.CrossRefGoogle Scholar
Hoskin, P.W.O. and Schaltegger, U. (2003) The composition of zircon and igneous and metamorphic petrogenesis. Pp. 2762 in: Zircon (Hanchar, J.M. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hoskin, P.W.O., Kinny, P.D., Wyborn, D. and Chappell, B.W. (2000) Identifying accessory mineral saturation during differentiation in granitoids magmas: an integrated approach. Journal of Petrology, 41, 13651396.CrossRefGoogle Scholar
Huang, H.Q., Li, X.H., Li, Z. and Li, W.U. (2013) Intraplate crustal remelting as the genesis of Jurassic high–K granites in the coastal region of the Guangdong Province, SE China. Journal of Asian Earth Sciences, 74, 280302.CrossRefGoogle Scholar
Ickert, R.B., Williams, I.S. and Wyborn, D. (2011) Ti in zircon from the Boggy Plain zoned pluton: Implications for zircon petrology and Hadean tectonics. Contributions to Mineralogy and Petrology, 162, 447461.CrossRefGoogle Scholar
Imai, A. (2000) Genesis of the Mamut porphyry Cu deposit, Sabah, east of Malaysia. Resource Geology, 50, 123.CrossRefGoogle Scholar
Jerram, D.A. and Higgins, M.D. (2007) 3D analysis of rock textures: quantifying igneous microstructures. Elements, 3, 239245.CrossRefGoogle Scholar
Jiang, C.Y. and An, S.Y. (1984) On chemical characteristics of calcic amphiboles from igneous rocks and their petrogenesis significance. Journal of Mineralogy and Petrology, 3, 19.Google Scholar
Kamgang, P., Chazot, G., Njonfang, E., Ngongang Tchuimegnie, N.B. and Tchoua, F. (2013) Mantle sources and magma evolution beneath the Cameroon Volcanic Line: Geochemistry of mafic rocks from the Bamenda Mountains (NW Cameroon). Gondwana Research, 24, 727741.CrossRefGoogle Scholar
Kylander-Clark, A.R.C., Hacker, B.R. and Cottle, J.M. (2013) Laser-ablation split-stream ICP petrochronology. Chemical Geology, 345, 99112.CrossRefGoogle Scholar
Lalonde, A.E. and Bernard, P. (1993) Composition and color of biotite from granites: two useful properties in the characterization of plutonic suites from the Hepburn interval zone of Wopmay orogen, Northwest Territories. The Canadian Mineralogy, 31, 203217.Google Scholar
Leake, B.E. (1971) On aluminous and edenitic hornblendes. Mineralogical Magazine, 38, 389407.CrossRefGoogle Scholar
Leake, B.E., Woolley, A. R., Birch, W.D., Burke, E.A., Ferraris, G., Grice, J.D., Hawthorne, F.C., Kisch, H.J., Krivovichev, V.G., Schumacher, J.C., Stephenson, N.C.N. and Whittaker, E.J.W. (2004) Nomenclature of amphiboles: additions and revisions to the International Mineralogical Association's amphibole nomenclature. Mineralogical Magazine, 68, 209215.CrossRefGoogle Scholar
Li, Z., Tainosho, Y., Shiraishi, K. and Owada, M. (2003) Chemical characteristics of fluorine-bearing biotite of early Paleozoic plutonic rocks from the Sør Rondane Mountains, East Antarctica. Geochemical Journal, 37, 145161.CrossRefGoogle Scholar
Loferski, P.J. and Ayuso, R.A. (1995) Petrology and mineral chemistry of the composite Deboullie pluton, northern Maine, USA: Implication for the genesis of Cu–Mo mineralization. Chemical Geology, 123, 89105.CrossRefGoogle Scholar
Maas, R., Kinny, P.D., Williams, I.S., Froude, D.O. and Compston, W. (1992) The Earths oldest known crust – a geochronological and geochemical study of 3900–4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia. Geochimica et Cosmochimica Acta, 56, 12811300.CrossRefGoogle Scholar
Maniar, P.D. and Piccoli, P.M. (1989) Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101, 635 643.2.3.CO;2>CrossRefGoogle Scholar
Marsh, B.D. (1988) Crystal size distribution (CSD) in rocks and the kinetics and dynamics of crystallization I. Theory. Contributions to Mineralogy and Petrology, 99, 277291.CrossRefGoogle Scholar
Mason, G.H. (1985) The mineralogy and textures of the Coastal Batholith, Peru. Pp. 156166 in: Magmatism at a Plate Edge: The Peruvian Andes (Pitcher, W.S., Atherton, M.P., Cobbing, E.J. and Beckinsale, R.D., editors). Blackie Halstead Press, Glasgow, UK.CrossRefGoogle Scholar
McCammon, C. (2005) The paradox of mantle redox. Science, 308, 807808.CrossRefGoogle ScholarPubMed
Miller, C., McDowell, S. and Mapes, R. (2003) Hot or cold granites? Implications of zircon saturation temperatures and preservation of inheritance. Geology, 31, 529532.2.0.CO;2>CrossRefGoogle Scholar
Moghadam, H.S., Li, X.H., Stern, R.J., Santos, J.F., Ghorbani, G., and Pourmohsen, M. (2016). Age and nature of 560–520 Ma calc-alkaline granitoids of Biarjmand, northeast Iran: insights into Cadomian arc magmatism in northern Gondwana. International Geology Review, 58, 14921509.CrossRefGoogle Scholar
Moien-Vaziri, H. (1985) Volcanism Tertiaire in Iran. These d’ Etat. Unversity Paris – Sud, Orsay, France 47 pp.Google Scholar
Morgan, D.J. and Jerram, D.A. (2006) On estimating crystal shape for crystal size distribution analysis. Journal of Volcanology and Geothermal Research, 154, 17.CrossRefGoogle Scholar
Munoz, J.L. (1984) F–OH and Cl–OH exchange in micas with applications to hydrothermal ore deposits. Pp. 469493 in: Micas (Bailey, S.W., editor). Reviews in Mineralogy, 13. Mineralogical Society of America, Washington, DC.CrossRefGoogle Scholar
Nachit, H., Razafimahefa, N., Stussi, J.M. and Carron, J.P. (1985) Composition chimique des biotite settypologie magmatique des granitoides. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 301, 813818.Google Scholar
NIMH (National Institute of Mental Health) (2019) ImageJ. https://imagej.nih.gov/ij/.Google Scholar
Nouri, F., Azizi, H., Stern, R.J, Asahara, Y., Khodaparast, S., Madanipour, S. and Yamamoto, K. (2018) Zircon U–Pb dating, geochemistry and evolution of the Late Eocene Saveh magmatic complex, central Iran: Partial melts of sub–continental lithospheric mantle and magmatic differentiation. Lithos, 314–315, 274292.CrossRefGoogle Scholar
Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L. (2008) Arc magmatism and subduction history beneath the Zagros Mountains, Iran: a new report of adakites and geodynamic consequences. Lithos, 106, 380398.CrossRefGoogle Scholar
Papoutsa, A. and Pe-Piper, G. (2014) Geochemical variation of amphiboles in A-type granites as an indicator of complex magmatic systems: Wentworth pluton, Nova Scotia, Canada. Chemical Geology, 384, 120134.CrossRefGoogle Scholar
Patino Douce, A.E., Johnston, A.D. and Rice, J.M. (1993) Octahedral excess mixing properties in biotite; a working model with applications to geobarometry and geothermometry. American Mineralogist, 78, 113131.Google Scholar
Putirka, K.D. (2008) Thermometers and barometers for volcanic systems. Pp. 61120. in: Minerals, Inclusions and Volcanic Processes (Putirka, K.D. and Tepley, F.J. III, editors). Reviews of Mineralogy and Geochemistry, 69. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Rapp, R.P. and Watson, E.B. (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crust–mantle recycling. Journal of Petrology, 36, 891931.CrossRefGoogle Scholar
Rasmussen, K.L. and Mortensen, J.K. (2013) Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: case studies from the northern Canadian Cordillera. Ore Geology Review, 50, 118142.CrossRefGoogle Scholar
Ridolfi, F., Renzulli, A. and Puerini, M. (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contributions to Mineralogy and Petrology, 160, 4566.CrossRefGoogle Scholar
Robert, J.I. (1976) Titanium solubility in synthetic phlogopite solid solutions. Chemical Geology, 17, 213227.CrossRefGoogle Scholar
Roduit, N. (2019) JMicroVision: Image analysis toolbox for measuring and quantifying components of high-definition images. Version 1.3.1. https://jmicrovision.github.io.Google Scholar
Rossetti, F., Nasrabady, M., Theye, T., Gerdes, A., Monie, P., Lucci, F. and Vignaroli, G. (2014) Adakite differentiation and emplacement in a subduction channel: The late Paleocene Sabzevar magmatism (NE Iran). Geological Society of America Bulletin, 126, 317343.CrossRefGoogle Scholar
Schmidt, M.W. (1992) Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer. Contributions to Mineralogy and Petrology, 110, 304–10.CrossRefGoogle Scholar
Selby, D. and Nesbitt, B.E. (2000) Chemical composition of biotitic from the Casino porphyry Cu–Au–Mo mineralization, Yukon, Canada: Evaluation of magmatic and hydrothermal fluid chemistry. Chemical Geology, 171, 7793.CrossRefGoogle Scholar
Shahabpour, J. (2007) Island-arc affinity of the central Iranian volcanic belt. Journal of Asian Earth Sciences, 30, 652–65.CrossRefGoogle Scholar
Siahcheshm, K., Calagari, A.A., Abedini, A, and Lentz, D.R. (2012) Halogen signatures of biotites from the Maher–Abad porphyry copper deposit, Iran: characterization of volatiles in syn- to post-magmatic hydrothermal fluids. International Geology Review, 12, 13531368.CrossRefGoogle Scholar
Siégel, C., Bryan, S.E., Allen, C.M. and Gust, D.A. (2018) Use and abuse of zircon-based thermometers: a critical review and a recommended approach to identify antecrystic zircons. Earth Science Reviews, 176, 87116.CrossRefGoogle Scholar
Sinha, A.K., Whalen, J.B. and Hogan, J.P. (1997) The Nature of Magmatism in the Appalachian Orogen. Geological Society of America, Bolder, USA, pp. 429.CrossRefGoogle Scholar
Stein, E. and Dietl, C. (2001) Hornblende thermobarometry of granitoids from the Central Odenwald (Germany) and their implications for the geotectonic development of the Odenwald. Mineralogy and Petrology, 72, 185207.CrossRefGoogle Scholar
Temizel, I., Abdioğlu, Y., Arsalan, M., Kaygusuz, A. and Aslan, Z. (2018) Mineral chemistry, whole-rock geochemistry and petrology of Eocene I-type shoshonitic plutons in the Gölköy area (Ordu, NE Turkey). Bulletin of the Mineral Research and Exploration, 157, 121152.Google Scholar
Uchida, E., Endo, S. and Makino, M. (2007) Relationship between solidification depth of granitic rocks and formation of hydrothermal ore deposits. Resource Geology, 57, 4756.CrossRefGoogle Scholar
Verdel, C., Wernicke, B.P., Hassanzadeh, J. and Guest, B. (2011) A Paleogene extensional arc flare-up in Iran, Tectonics, 30, 3008.CrossRefGoogle Scholar
Vernon, R.H. (2004) A Practical Guide to Rock Microstructure. Cambridge University Press, UK, pp. 579.CrossRefGoogle Scholar
Villaseca, C., Ruiz-Martinez, V.C. and Pérez-Soba, C. (2017) Magnetic susceptibility of Variscan granite types of the Spanish Central System and the redox state of magma. Geologica Acta, 15, 379394.Google Scholar
Watson, E.B. (1980) Some experimental determined zircon/liquid partition coefficient for the rare earth elements. Geochimica et Cosmochimica Acta, 44, 895897.CrossRefGoogle Scholar
Watson, E.B. and Harrison, T.M. (1983) Zircon saturation revisited: temperature and composition effects in a variety of crustal magma types. Earth and Planetary Science Letters, 64, 295304.CrossRefGoogle Scholar
Watson, E.B. and Harrison, T.M. (2005) Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308, 841844.CrossRefGoogle ScholarPubMed
Watson, E.B. and Harrison, T.M. (2006) Response to comments on “Zircon thermometer reveals minimum melting conditions on earliest Earth”. Science, 311, 779c.CrossRefGoogle Scholar
Watson, E.B., Wark, D. and Thomas, J. (2006) Crystallization thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413433.CrossRefGoogle Scholar
Wones, D.R. (1989) Significance of the assemblage titanite magnetite quartz in granitic rocks. American Mineralogist, 74, 744749.Google Scholar
Wones, D.R. and Eugster, H.P. (1965) Stability of biotite: experiment, theory, and application. American Mineralogist, 50, 12281272.Google Scholar
Wu, C.M. and Chen, H.X. (2015) Revised Ti-in-biotite geothermometer for ilmenite or rutile-bearing crustal metapelites. Science Bulletin, 60, 116121.CrossRefGoogle Scholar
Xianwu, B., Ruizhong, H., Hanley, J.J., Mungall, J.E., Jiantang, P., Linbo, S., Kaixing, W., Yan, S., Hongli, L. and Xiaoyan, H. (2009) Crystallisation condition (T, P, ƒO2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River–Jinshajiang alkaline igneous belt, western Yunnan Province, China, Mineralogy and Petrology, 96, 4358.CrossRefGoogle Scholar
Yavuz, F. (2003) Evaluating micas in petrologic and metallogenic aspect: part II — applications using the computer program Mica+. Computers and Geosciences, 29, 12151228.CrossRefGoogle Scholar
Yeganehfar, H., Ghorbani, M.R., Shinjo, R. and Ghaderi, M. (2013) Magmatic and geodynamic evolution of Urumieh–Dokhtar basic volcanism, Central Iran: Major, trace element, isotopic, and geochronologic implications. International Geology Review, 55, 767786.CrossRefGoogle Scholar
Zen, E.A. (1986) Aluminum enrichment in silicate melts by fractional crystallization, some mineralogical and petrographic constraints. Journal of Petrology, 27, 10951118.CrossRefGoogle Scholar
Zhou, Z.X. (1986) The origin of intrusive mass in Fengshandong, Hubei province. Acta Petrologica Sinica, 2, 5970.Google Scholar
Zhu, C. and Sverjensky, D.A. (1992) F-Cl-OH partitioning between biotite and apatite. Geochimica et Cosmochimica Acta, 56, 34353467.CrossRefGoogle Scholar
Supplementary material: File

Babazadeh et al. supplementary material

Tables S1-S8

Download Babazadeh et al. supplementary material(File)
File 79.4 KB