Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T19:40:35.072Z Has data issue: false hasContentIssue false

The Lodran meteorite and its relationship to the ureilites

Published online by Cambridge University Press:  05 July 2018

Richard W. Bild
Affiliation:
Institute of Geophysics and Planetary Physics, and Department of Chemistry, University of California, Los Angeles, CA 90024
John T. Wasson
Affiliation:
Institute of Geophysics and Planetary Physics, and Department of Chemistry, University of California, Los Angeles, CA 90024

Summary

Lodran is a unique meteorite consisting of roughly equal amounts of metal, olivine, and pyroxene with minor amounts of sulphide, chromite, phosphide, chrome-diopside, and a new phase with a composition close to (K,Na)AlSi5O12. Zähringer reported planetary-type rare gases in both the metal and silicates, suggesting a primitive nature. The pyroxene composition is Fs13.8 with little variation. Olivine composition averages Fa12.6, but varies at least ±20 % both among grains and zoned within single grains; only the Fe-rich olivine is in equilibrium with the pyroxene. The metal probably cooled rapidly (700 K/Myr) at high temperatures and slower (30 K/Myr) at lower temperatures. Two compositional populations of chromite are found.

A model for the formation of Lodran includes three steps: Formation of large olivine, pyroxene, and metal grains, with the trapping of small olivine inclusions in pyroxene and pyroxene in olivine. Equilibration and recrystallization of olivine, pyroxene, and metal, loss of alkalis and Ca; this probably occurred in a parent-body setting. And incorporation of reducing materials and mild reheating sufficient to produce the zoning in the olivine but not enough to re-equilibrate the pyroxene.

Phase compositions and rare-gas concentrations in ureilites are similar to those in Lodran. In some respects Lodran appears to be a metal-rich ureilite, but the higher Fe/(Fe+Mg) ratios in the latter (Fa 21 olivine) suggest origin on separate parent bodies.

The Harvard University meteorite is a mesosiderite and not closely related to Lodran.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Max-Planck-Institut für Kernphysik, 69 Heidelberg, Germany

References

Albert, (A. L.), and Ray, (L.), 1970. Correction factors for electron probe microanalysis of silicates, oxides, carbonates, phosphates and sulfates. Anal. Chem. 42, 1408-14.Google Scholar
Bence, (A. E.) and Albee, (A. L.), 1968. Empirical correction factors for the electron microanalysis of silicates and oxides. Journ. Geol. 76, 382-403.CrossRefGoogle Scholar
Buerger, (M. J.), 1935. The silica framework crystals and their stability fields. Zeits. Krist. 90, 186-92.Google Scholar
Bunch, (T. E.) and Keil, (K.), 1971. Chromite and ilmenite in nonchondritic meteorites. Amer. Min. 56, 146-57.Google Scholar
Bunch, (T. E.) and Keil, (K.), and Snetsincer, (K. G.), 1967. Chromite composition in relation to chemistry and texture of ordinary chondrites. Geochimica Acta, 31, 1569-82.CrossRefGoogle Scholar
Bunch, (T. E.) and Keil, (K.), and Olsen, (E.), 1970. Mineralogy and petrology of silicate inclusions in iron meteorites. Contr. Min. Petr. 25, 297-340.CrossRefGoogle Scholar
Bunch, (T. E.) and Keil, (K.), and Huss, (G. I.), 1972. The Landes meteorite. Meteoritics, 7, 31-8.CrossRefGoogle Scholar
Coulson, (A. L.), 1940. A catalogue of meteorites. In: Mem. Geol. Surv. India, 75, 346 pp.Google Scholar
Dodd, (R. T.), 1972. Calcium in chondritic olivine. Mem. Geol. Soc. Amer. 132, 651-60.Google Scholar
Dodd, (R. T.), Van Scnmus, (W. R.), and Korrman, (D. M.), 1967. A survey of the unequilibrated ordinary chondrites. Geochimica Acta, 31, 921-51.CrossRefGoogle Scholar
Goldsthn, (J. I.) and Doan, (A. S. Jr.), 1972. The effect of phosphorus on the formation of the Widmanst;itten pattern in iron meteorites. Ibid. 36, 51-69.CrossRefGoogle Scholar
Goldstein, (J. I.) and Short, (J. M.), 1967. Cooling rates of 27 iron and stony-iron meteorites. Ibid. 31, 1001-23.CrossRefGoogle Scholar
Herzog, (G. F.) and Anders, (E.), 1971. Absolute scale for radiation ages of stony meteorites. Ibid. 35, 605-11.CrossRefGoogle Scholar
Hey, (M. H.), 1966. Catalogue of Meteorites. London: British Museum.Google Scholar
Keil, (K.) and Fredriksson, (K.), 1964. The iron, magnesium and calcium distribution in coexisting olivines and rhombic pyroxenes of chondrites. Journ. Geophys. Res. 69, 3487-3515.CrossRefGoogle Scholar
Lord, (H. C.), 1965. Molecular equilibria and condensation in a solar nebula and cool stellar atmospheres. Icarus, 4, 279-88.CrossRefGoogle Scholar
Lukesh, (J.) and Buerger, (M. J.), 1942. The tridymite problem. Science, 95, 21.Google Scholar
Marvin, (U. B.) and Wood, (J. A.), 1972. The Haverö ureilite: Petrographic notes. Meteoritics, 7, 601-10.CrossRefGoogle Scholar
Mason, (B.), 1953. Tridymite and christensenite. Amer. Min. 38, 866-7.Google Scholar
Mazor, (E.), Heymann, (D.), and Anders, (E.), 1970. Noble gases in carbonaceous chondrites. Geochimica Acta, 34, 781-824.CrossRefGoogle Scholar
Neovonen, (K. J.), Ohlson, (B.), Papunen, (H.), Häkli, (T. A.), and Ramdohr, (P.), 1972. The Haverö ureilite. Meteoritics, 7, 515-31.Google Scholar
Oldham, (T.), 1869. Meteorites. Rec. Geol. Surv. India, 2, 20.Google Scholar
Powell, (B. N.), 1969. Petrology and chemistry of mesosiderites—I. Textures and composition of nickel-iron. Geochimica Acta, 33, 789-810.CrossRefGoogle Scholar
Powell, (B. N.), 1971. Petrology and chemistry of mesosiderites—II. Silicate textures and compositions and metal-silicate relationships. Ibid. 35, 5-34.CrossRefGoogle Scholar
Prior, (G. T.), 1916. On the genetic relationship and classification of meteorites. Min. Mag. 18, 26-44.Google Scholar
Prior, (G. T.), 1919. A method for the quick determination of the approximate amount and composition of the nickeliferous iron in meteorites; and its application to seventeen meteoric stones. Ibid. 18, 349-53.CrossRefGoogle Scholar
Prior, (G. T.), 1920. The classification of meteorites. Ibid. 19, 51-63.CrossRefGoogle Scholar
Rambaldi, (E.), Jagoutz, (E.), and Wasson, (J. T.), 1974. Bitburg—a group-IB iron meteorite with silicate inclusions. Ibid. 39, 595-600.CrossRefGoogle Scholar
Ramdohr, (P.), 1967. Der Meteorit ‘Harvard University'. Ein neuentdeckter Lodranit-ähnlicher 'Mesosiderit'. Chem. Erde, 26, 1-10.Google Scholar
Ramdohr, (P.), 1972. The highly reflecting and opaque components in the mineral content of the Hayerö meteorite. Meteoritics, 7, 565-71.CrossRefGoogle Scholar
Reed, (S. J. B.), 1965. Electron-probe microanalysis of schreibersite and rhabdite in iron meteorites. Geochimica Acta, 29, 513-34.CrossRefGoogle Scholar
Roedder, (E.) and Weiblen, (P. W.), 1971. Lunar petrology of sificate melt inclusions, Apollo 11 rocks. Proc. Apollo II Lunar Sci. Conf. 801-37.Google Scholar
Roedder, (E.) 1972. Petrographic features and petrologic significance of melt inclusions in Apollo 14 and 15 rock. Proc. Lunar Sci. Conf. 3rd, 251-79.CrossRefGoogle Scholar
Roedder, (E.) 1975. Anomalous low-K silicate melt inclusions in ilmenite from Apollo 17 basalts. Proc. Lunar Sci. Conf. 6th, 147-64.Google Scholar
Scott, (E. R. D.), and Bled, (R. W.), 1974. Structure and formation of the San Cristobal meteorite, other IB irons and group IIICD. Ibid. 38, 1379-91.CrossRefGoogle Scholar
Short, (J. M.) and Goldstetn, (J. I.), 1967. Rapid methods of determining cooling rates of iron and stony iron meteorites. Science, 156, 59-61.CrossRefGoogle Scholar
Stewart, (E. B.), 1975. Apollonian metamorphic rocks—The products of prolonged subsolidus equilibrium (Abstract). In Lunar Science—VI, pp. 774-6. Houston: Lunar Science Institute.Google Scholar
Tschermak, (G.), 1870. Der Meteorit von Lodran. Sitzber. Akad. Wiss. Wien, Math.-naturwiss. Kl., Abt. 2, 61, 465-75+plate.Google Scholar
Vdovykin, (G. P.), 1970. Ureilites. Space Sci. Rev. 10, 483-510.CrossRefGoogle Scholar
Wasson, (J. T.), 1971. An equation for the determination of iron-meteorite cooling rates. Meteoritics, 6, 139-47.CrossRefGoogle Scholar
Wasson, (J. T.), 1974. Meteorites—Classification and Properties. New York: Springer-Verlag.Google Scholar
Wasson, (J. T.), Chou (C.-L.), Bild, (R. W.), and Baedecker, (P. A.), 1976. Classification of and elemental fractionation among ureilites. Geochimica Acta, 40, submitted.CrossRefGoogle Scholar
Weber, (IX. W.), Hintenberger, (H.), and Begemann, (F.), 1971. Noble gases in the Haver6 ureifite. Earth Planet. Sci. Lett. 13, 205-9.CrossRefGoogle Scholar
Wiik, (H. B.), 1972. The chemical composition of the Haver5 meteorite and the genesis of the ureilites. Meteoritics, 7, 553-7.CrossRefGoogle Scholar
Wilkening, (L. L.), Herman, (G. F.), and Anders, (E.), 1973. Altmxinium-26 in meteorites-VII. Ureilites, their unique radiation history. Geochimica Acta, 37, 1803-10.CrossRefGoogle Scholar
Wlotzka, (F.), 1972. Haverö ureilite: Evidence for recrystallization and partial reduction. Meteoritics, 7, 591-600.CrossRefGoogle Scholar
Wood, (J. A.), 1964. The cooling rates and parent planets of several iron meteorites. Icarus, 3, 429-59.CrossRefGoogle Scholar
Wood, (J. A.), 1967. Chondrites: Their metallic minerals, thermal histories and parent planets. Ibid. 6, 1-49.CrossRefGoogle Scholar
Zähringer, (J.), 1968. Rare gases in stony meteorites. Geochimica Acta, 32, 209-37.CrossRefGoogle Scholar