Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T16:20:39.204Z Has data issue: false hasContentIssue false

Lead-antimony sulfosalts from Tuscany (Italy). XVII. Meerschautite, (Ag,Cu)5.5Pb42.4(Sb,As)45.1S112O0.8, a new expanded derivative of owyheeite from the Pollone mine, Valdicastello Carducci: occurrence and crystal structure

Published online by Cambridge University Press:  02 January 2018

Cristian Biagioni*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
Yves Moëlo
Affiliation:
Institut des Matériaux Jean Rouxel, UMR6502, CNRS, Université de Nantes, 2, rue de la Houssinière, 44 322 Nantes Cedex 3, France
Paolo Orlandi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, I-56126 Pisa, Italy
Chris J. Stanley
Affiliation:
Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
*

Abstract

The new mineral species meerschautite, ideally (Ag,Cu)5.5Pb42.4(Sb,As)45.1S112O0.8, has been discovered in the baryte + pyrite ± (Pb-Zn-Ag) deposit of the Pollone mine, near Valdicastello Carducci, Apuan Alps, Tuscany, Italy. It occurs as black prismatic crystals, striated along [100], up to 2 mm long and 0.5 mm thick, associated with baryte, boulangerite, pyrite, quartz and sphalerite. Meerschautite is opaque with a metallic lustre and shows a black streak. In reflected light, meerschautite is white in colour, weakly bireflectant and non pleochroic. With crossed polars, it is distinctly anisotropic with grey to dark grey rotation tints with brownish and greenish shades. Reflectance percentages for COM wavelengths [λ (nm), Rair (%)] are: 470: 39.7/41.4; 546: 38.3/39.9; 589: 37.4/39.0; 650: 35.8/37.2. Electron-microprobe data collected on two different samples gave (wt.%): Cu 0.22, Ag 3.15, Tl 0.07, Pb 48.54, Sb 25.41, As 2.82, S 19.74, Se 0.14, Cl 0.03, sum 100.12 (# 1) and Cu 0.22, Ag 3.04, Tl 0.13, Pb 48.53, Sb 25.40, As 2.93, Bi 0.06, S 19.82, Se 0.13, Cl 0.05, sum 100.31 (# 2). On the basis of 112 anions (S+Se+Cl) per formula unit, the empirical formulae are (Ag5.29Cu0.63)∑5.92(Pb42.43Tl0.06)∑42.49(Sb37.80As6.82)∑44.62(S111.53Se0.32Cl0.15)∑112 (# 1) and (Ag5.08Cu0.62)∑5.70(Pb42.22Tl0.12)∑42.34(Sb37.61As7.07Bi0.05)∑44.73(S111.45Se0.30Cl0.25)∑112 (# 2). Main diffraction lines, corresponding to multiple hkl indices, are [d in Å (relative visual intensity)]: 3.762 (m), 3.663 (s), 3.334 (vs), 3.244 (s), 3.016 (m), 2.968 (m), 2.902 (m), 2.072 (ms). The crystal structure study gave a monoclinic unit cell, space group P21, with a = 8.2393(1), b = 43.6015(13), c = 28.3688(8) Å, β = 94.128(2)°, V = 10164.93(2) Å3, Z = 2. The crystal structure has been solved and refined to a final R1 = 0.122 on the basis of 49,037 observed reflections. The structure is based on two building blocks, both formed by a complex column with a pseudotrigonal Pb6S12 core and two arms of unequal lengths (short and long arms, respectively). Two different kinds of short arms occur in meerschautite. One is an Ag-rich arm, whereas the other shows localized Sb–O–Sb bonds. Meerschautite is an expanded derivative of owyheeite and has quasi-homeotypic relationships with sterryite and parasterryite.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aurivillius, B. (1983) The crystal structure of two forms of BaBi2S4 . Ada Chemica Scandinavica, A37, 399–07.CrossRefGoogle Scholar
Biagioni, C, Orlandi, P., Moëlo, Y and Bindi, L. (2014) Lead-antimony sulfosalts from Tuscany (Italy). XVI. Carducciite, (AgSb)Pb6(As,Sb)8S20, a new Sb-rich derivative of rathite from the Pollone mine, Valdicastello Carducci: occurrence and crystal structure. MineralogicalMagazine, 78, 1775—1793.Google Scholar
Biagioni, C, Moëlo, Y, Orlandi, P., Stanley, C.J. and Evain, M. (2013) Meerschautite, IMA 2013-061. CNMNC Newsletter No. 17, October 2013, page 3004. Mineralogical Magazine, 11, 2997-3005.Google Scholar
Bindi, L., Keutsch, F.N., Francis, C.A. and Menchetti, S. (2009) Fettelite, [Ag6As2S7][Ag10HgAs2S8] from Chanarcillo, Chile: Crystal structure, pseudosymmetry, twinning, and revised chemical formula. American Mineralogist, 94, 609615.CrossRefGoogle Scholar
Brese, N.E. and O'Keeffe, M. (1991) Bond-valence parameters for solids. Ada Crystallographica, B47, 192197.Google Scholar
Bruker AXS Inc. (2004) APEX2. , Bruker Advanced X-ray Solutions, Madison, Wisconsim USA.Google Scholar
Costagliola, P., Benvenuti, M., Lattanzi, P. and Tanelli, G. (1998) Metamorphogenic barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry. Mineralogy and Petrology, 62, 29—60.CrossRefGoogle Scholar
Guastoni, A., Bindi, L. and Nestola, F. (2012) Debattistiite, Ag9Hg0 5As6S12Te2, a new Te-bearing sulfosalt from Lengenbach quarry, Binn valley, Switzerland: description and crystal structure. Mineralogical Magazine, 76, 743—750.CrossRefGoogle Scholar
Ilinca, G., Makovicky, E., Topa, D. andZagler, G. (2012) Cuproneyite, Cu7Pb27Bi25S68, a new mineral species from Barja Bihor, Romania. The Canadian Mineralogist, 50, 353370.CrossRefGoogle Scholar
Jambor, LL. (1967) New lead sulfantimonides from Madoc, Ontario - Part 1. The Canadian Mineralogist, 9, 724.Google Scholar
Kerndt, T (1845) Uber die Krystallform und die chemische Zusammensetzung des Geo-Kronits von Val di Castello. Annalen der Physik, 141, 302307.CrossRefGoogle Scholar
Kraus, W. and Nolze, G. (1996) Powder Cell — a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Laufek, F, Pazout, R. and Makovicky, E. (2007) Crystal structure of owyheeite, Agi 5Pb443Sb6 o7Si4: refinement from powder synchrotron X-ray diffraction. European Journal of Mineralogy, 19, 557566.CrossRefGoogle Scholar
Leone, P., Le Leuch, L.-M., Palvadeau, P., Molinie, P. and Moëlo, Y (2003) Single crystal structures and magnetic properties of two iron or manganese-lead-antimony sulfides: MPb4Sb6Si4 (M: Fe, Mn). Solid State Sciences, 5, 771776.CrossRefGoogle Scholar
Makovicky, E. (1985) Cyclically twinned sulphosalt structures and their approximate analogues. Zeitschrift fur Kristallographie, 173, 123.CrossRefGoogle Scholar
Makovicky, E. (1993) Rod-based sulphosalt structures derived from the SnS and PbS archetypes. European Journal of Mineralogy, 173, 54—591.Google Scholar
Makovicky, E. (1997) Modular crystal chemistry of sulphosalts and other complex sulphides. Pp. 237-271 in: Modular Aspects of Minerals, (S. Merlino, editor). European Mineralogical Union, Notes in Mineralogy, 1. Eotvos University Pres Budapest.Google Scholar
Meerschaut, A., Palvadeau, P., Moëlo, Y and Orlandi, P. (2001) Lead-antimony sulfosalts from Tuscany (Italy). IV Crystal structure of pillaite, Pb9Sb10S23C10o.5, an expanded monoclinic derivative of hexagonal Bi (Bi2S3)9I3, from the zinkenite group. European Journal of Mineralogy, 13, 779—790.CrossRefGoogle Scholar
Meisser, N., Schenk, K., Berlepsch, P., Brugger, 1, Bonin, M., Criddle, A.I., Thelin, P. and Bussy, F (2007) Pizgrischite, (Cu,Fe)Cu14PbBi17S35, a new sulfosalt from the Swiss Alps: description, crystal structure and occurrence. The Canadian Mineralogist, 45, 12291245.CrossRefGoogle Scholar
Mills, S.I, Christy, A.G., Chen, E.C.-C. and Raudsepp, M. (2009) Revised values of the bond valence parameters for [6]Sb(V)-0 and [311]Sb(III)-O. Zeitschrift fur Kristallographie, 224, 423—431.CrossRefGoogle Scholar
Moëlo, Y, Meerschaut, A., Orlandi, P. and Palvadeau, P. (2000) Lead-antimony sulfosalts from Tuscany (Italy): II - Crystal structure of scainiite, Pb14Sb3oS5405, an expanded monoclinic derivative of Ba12Bi24S48 hexagonal sub-type (zinkenite group). European Journal of Mineralogy, 12, 835846.CrossRefGoogle Scholar
Moëlo, Y, Orlandi, P., Guillot-Deudon, C, Biagioni, C, Paar, W. and Evain, M. (2011) Lead-antimony sulfosalts from Tuscany (Italy). XI. The new mineral species parasterryite, Ag4Pb20(Sb14 5AS9 5)x24S58, and associated sterryite, Cu(Ag,Cu)3Pbi9(Sb,As)x22(As— As)S56, from the Pollone mine, Tuscany, Italy. The Canadian Mineralogist, 49, 623—638.CrossRefGoogle Scholar
Moëlo, Y, Guillot-Deudon, C. Evain, M., Orlandi, P. and Biagioni, C. (2012) Comparative modular analysis of two complex sulfosalt structures: sterryite, Cu(Ag, Cu)3Pb19(Sb,As)22(As-As)S5(5, and parasterryite, Ag4Pb20(Sb,As)24S58 . Ada Crystallographica, B68, 480–92.Google Scholar
Moëlo, Y, Pecorini, R., Ciriotti, M.E., Meisser, N., Caldes, M.T., Orlandi, P., Petit, P.-E., Martini, B. and Salvetti, A. (2013) Tubulite, ∼Ag2Pb22Sb20S53, a new Pb-Ag-Sb sulfosalt from Le Rivet quarry, Peyrebrune ore field (Tarn, France) and Bio, Borgofranco mines, Borgofranco d'lvrea (Piedmont, Italy). European Journal of Mineralogy, 25, 10171030.CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y, Meerschaut, A. and Palvadeau, P. (1999) Lead-antimony sulfosalts from Tuscany (Italy). I. Scainiite, Pb14Sb30S54O5, the first Pb-Sb oxy-sulfosalt, from Buca della Vena mine. European Journal of Mineralogy, 11, 949954.CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y, Meerschaut, A. and Palvadeau, P. (2001) Lead-antimony sulfosalts from Tuscany (Italy). III. Pillaite, Pb9Sb10S23C10o.5, a new Pb-Sb oxy-chloro-sulfosalt, from Buca della Vena mine. European Journal of Mineralogy, 13, 605—610.CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y, Meerschaut, A., Palvadeau, P. and Leone, P. (2004) Lead-antimony sulfosalts from Tuscany (Italy). VI. Pellouxite, ∼ (Cu,Ag)2Pb21Sb23S55C1O, a new oxy-chloro-sulfosalt, from Buca della Vena mine, Apuan Alps. European Journal of Mineralogy, 16, 839844.CrossRefGoogle Scholar
Orlandi, P., Meerschaut, A., Moëlo, Y, Palvadeau, P. and Leone, P. (2005) Lead-antimony sulfosalts from Tuscany (Italy). VIII. Rouxelite, Cu2HgPb22Sb28S64(O,S)2, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. The Canadian Mineralogist, 43, 919933 CrossRefGoogle Scholar
Orlandi, P., Moëlo, Y, Campostrini, I. and Meerschaut, A. (2007) Lead-antimony sulfosalts from Tuscany (Italy). IX. Marrucciite, Hg3Pb16Sb18S46, a new sulfosalt from Buca della Vena mine, Apuan Alps: Definition and crystal structure. European Journal of Mineralogy, 19, 267279.CrossRefGoogle Scholar
Palvadeau, P., Meerschaut, A., Orlandi, P. and Moëlo, Y (2004) Lead-antimony sulfosalts from Tuscany (Italy). VII. Crystal structure of pellouxite, ∼ (Cu,Ag)2Pb21Sb23S55C10, an expanded monoclinic derivative of Ba12Bi24S48 hexagonal sub-type (zinkenite group). European Journal of Mineralogy, 16, 845—855.CrossRefGoogle Scholar
Pandeli, E., Bagnoli, P. and Negri, M. (2004) The Fornovolasco schists of the Apuan Alps (Northern Tuscany, Italy): a new hypothesis for their stratigraphic setting. Bollettino della Societa Geologica Italiana, 123, 5366.Google Scholar
Petruk, W., Cabri, L.J., Harris, D.C., Stewart, J.M. and Clark, L.A. (1970) Allargentum, redefined. The Canadian Mineralogist, 10, 163—172.Google Scholar
Pinto, D., Bonaccorsi, E., Balic-Zunic, T and Makovicky, E. (2008) The crystal structure of vurroite, Pb20Sn2(Bi, As)22S54Cl6: OD-character, polytypism, twinning and modular description. American Mineralogist, 93, 713727.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Ada Crystallographica, A64, 112—122.Google Scholar
Suh, I.-K., Ohta, H. and Waseda, Y (1988) High-temperature thermal expansion of six metallic elements measured by dilatation method and X-ray diffraction. Journal of Material Science, 23, 757—760.CrossRefGoogle Scholar
Topa, D. and Makovicky, E. (2006) The crystal structure of paderaite, Cu7(Xo33Pbi 33Bin.33)zi3S22, with X =Cu or Ag: new data and interpretation. The Canadian Mineralogist, 44, 481495.CrossRefGoogle Scholar
Topa, D. and Makovicky, E. (2012) Eclarite: new data and interpretations. The Canadian Mineralogist, 50, 371386.CrossRefGoogle Scholar
Topa, D., Sejkora, J., Makovicky, E., Prsek, J., Ozdin, D., Putz, H., Dittrich, H. and Karup-Moller, S. (2012) Chovanite, Pb15_2xSb14+2xS36Ox (x∼0.2), a new sulphosalt species from the Low Tatra Mountains, Western Carpathians, Slovakia. European Journal of Mineralogy, 24, 727740.CrossRefGoogle Scholar
Wilson, A.J.C.. (1992) International Tables for Crystallography Volume C., Kluwer, Dordrecht The Netherlands.Google Scholar
Zelenski, M., Garavelli, A, Pinto, D., Vurro, E, Moëlo, Y, Bindi, L., Makovicky, E. and Bonaccorsi, E. (2009) Tazieffite, Pb2oCd2(As,Bi)22S5oClio, a new chloro-sulfosalt from Mutnovsky volcano, Kamchatka Peninsula, Russian Federation. American Mineralogist, 94, 13121324.CrossRefGoogle Scholar
Supplementary material: File

Biagioni et al. supplementary material

CIF

Download Biagioni et al. supplementary material(File)
File 576.6 KB