Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:32:06.278Z Has data issue: false hasContentIssue false

Iron sulphides at the epithermal gold-copper deposit of Palai-Islica (Almería, SE Spain)

Published online by Cambridge University Press:  05 July 2018

F. J. Carrillo Rosúa
Affiliation:
Department of Mineralogy and Petrology, University of Granada and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. Fuentenueva s/n. E-18002, Granada, Spain
S. Morales Ruano*
Affiliation:
Department of Mineralogy and Petrology, University of Granada and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. Fuentenueva s/n. E-18002, Granada, Spain
P. Fenoll Hach-Alí
Affiliation:
Department of Mineralogy and Petrology, University of Granada and Instituto Andaluz de Ciencias de la Tierra (CSIC-UGR), Avda. Fuentenueva s/n. E-18002, Granada, Spain
*

Abstract

Au-Cu mineralization at Palai-Islica occurs as disseminations in massive silicified volcanic rocks and, more abundantly, in sulphide-bearing quartz veins. The major ore minerals in the deposit are pyrite ± chalcopyrite, sphalerite and galena and there is a great variety of accessory minerals, including Au-Ag alloys and native gold. Pyrite, the most abundant sulphide, is closely associated with gold. Seven different types of pyrite have been distinguished with a variable concentration of different trace elements. Among these, the only one free of trace elements (type IV) is related to Au-Ag alloys. Pyrite associated with these Au-Ag alloys has cubic and pentagonal dodecahedral habits, whereas pyrite with pentagonal dodecahedral habit only is from barren zones. In addition, there is no significant invisible gold in the pyrite, but there is a relatively large amount of Ag in collomorphic pyrite (up to 0.20 wt.%) or type III pyrite (up to 1.47 wt.%). Arsenic is the most abundant trace element in pyrite (up to 6.11 wt.%), present as a metastable solid solution or as a non-stoichiometric element. A variety of marcasite related to the gold levels also has a considerable amount of trace elements (As up to 1.15 wt.%, Sb up to 0.40 wt.%).

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amstutz, G.C. (1963 Accessories on pyrite, pyrite zoning, and zoned pyrite. Schweizerische Mineralogische und Petrographische Mittteilungen, 33, 111122.Google Scholar
Arehart, G.B., Chyssoulis, S.L. and Kesler, S.E. (1993 Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits: implications for depositional processes. Economic Geology, 88, 171185.CrossRefGoogle Scholar
Arribas, A. and Tosdal, R. (1994 Isotopic composition of Pb in ore-deposits of the Betic Cordillera, Spain. Origin and relationship to other European deposits. Economic Geology, 89, 10741093.CrossRefGoogle Scholar
Arribas, A., Cunningham, C.G., Rytuba, J.J., Rye, R.O., Kelly, W.C., PodwysocM, M.H., McKee, E.H. and Tosdal, R.M. (1995 Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90, 795822.CrossRefGoogle Scholar
Asadi, H.H., Voncken, J.H.L. and Hale, M. (1999 Invisible gold at Zarshuran, Iran. Economic Geology, 94, 13671374.CrossRefGoogle Scholar
Ashley, P.M., Creagh, C.J. and Ryan, C.G. (2000 Invisible gold in ore and minerals concentrates from the Hillgrove gold-antimony deposits, NSW, Australia. Mineralium Deposita, 35, 285301.CrossRefGoogle Scholar
Benning, L.G., Wilkin, R.T. and Barnes, H.L. (2000 Reaction pathways in the Fe-S system below 100°C. Chemical Geology, 167, 2551.CrossRefGoogle Scholar
Boyle, R.W. (1979 The geochemistry of gold and its deposits. Geological Survey of Canada Bulletin, 280.Google Scholar
Bush, J.B., Cook, D.R., Lovering, T.S. and Morris, H.T. (1960 The Chief Oxide-Buring area discoveries, East Tintic district, Utah; A case history - Part 1, U.S.G.S. studies and exploration. Economic Geology, 55, 11161147.CrossRefGoogle Scholar
Carrillo Rosiia, F.J., Morales Ruano, S. and Fenoll Hach-Ali, P. (2001a) Mineralogy and mineral chemistry of precious metals of the Cu-Au mineralisation at the Palai-Islica deposit, Almeria, SE Spain. Pp. 715718 in: Mineral Deposits at the Begining of the 21st Century (Piestrzynski, A. et at, editors). Balkema, Lisse, The Netherlands.Google Scholar
Carrillo Rosiia, F.J., Morales Ruano, S. and Fenoll Hach-Ali, P. (2001b) Tipologia de la pirita en el deposito epitermal de Palai-Islica (Carboneras, Almeria). Implicaciones en la genesis del oro. Boletin de la Sociedad Espanola de Mineralogia, 24-A, 151152.Google Scholar
Carrillo Rosiia, F.J., Morales Ruano, S. and Fenoll Hach-Ali, P. (2002 The three generations of gold in the Palai-Islica epithermal deposit, Southeastern Spain. The Canadian Mineralogist, 40, 14651481.CrossRefGoogle Scholar
Clark, L.A. (1960 The Fe-As-S system: Phase relations and applications. Economic Geology, 55, 13451381.CrossRefGoogle Scholar
Cook, N.J. and Chryssoulis, S.L. (1990 Concentrations of ‘invisible gold’ in the common sulphides. The Canadian Mineralogist, 28, 116.Google Scholar
Craig, J.R., Vokes, F.M. and Solberg, T.N. (1998 Pyrite: physical and chemical textures. Mineralium Deposita, 34, 82101.CrossRefGoogle Scholar
Dewey, J.F. (1988 Extensional collapse of orogens. Tectonics, 7, 11231140.CrossRefGoogle Scholar
Fernandez Soler, J.M. (1996 El vulcanismo calco-alcalino en el Parque Natural de Cabo de Gata-Nijar (Almeria). Estudio volcanoldgico y petrologi-co. PhD thesis, Universidad de Granada. Sociedad Almeriense Historia Natural, 295 pp.Google Scholar
Fleet, M.E. (1978 The pyrrhotite-marcasite transformation. The Canadian Mineralogist, 16, 3135.Google Scholar
Fleet, M.E. and Mumin, A.H. (1997 Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. American Mineralogist, 82, 182193.CrossRefGoogle Scholar
Fleet, M.E., McLean, P.J. and Barbier, J. (1989 Oscillatory-zoned As-bearing pyrite from strata-bound and stratiform gold deposits: An indicator or ore fluid evolution. Pp. 356362 in: The Geology of Gold Deposits: The Perspective in 1988 (Keays, R.R., Ramsay, W.R.H., and Groves, D.I., editors). Economic Geology Monograph, 6. Economic Geology Publishing Company, El Paso, Texas.Google Scholar
Fleet, M.E., Chryssoulis, S.L., MacLean, P.J., Davidson, R. and Weisener C.G. (1993 Arsenian pyrite from gold deposits. Au and As distribution investigated by SIMS and EMP, and colour staining and surface oxidation by XPS and LIMS. The Canadian Mineralogist, 31, 117.Google Scholar
Garcia Duenas, V., Balanya, J.C. and Martinez Martinez, J.M. (1992 Miocene extensional detach-ments in the outcropping basements of the northern Alboran Basin (Betics). Geomarine Letters, 12, 8895.Google Scholar
Griffin, W.L., Ashley, P.M., Ryan, S.G., Sie, S.H. and Suter, G.F. (1991 Pyrite geochemistry in the North Arm epithermal Ag-Au deposit, Queensland, Australia: A proton-microprobe study. The Canadian Mineralogist, 29, 185198.Google Scholar
Huston, D.L., Sie, S.H., Suter, G.F., Cooke, D.R. and Both, R.A. (1995 Trace elements in sulfide minerals from eastern Australian volcanic hosted massive sulfide deposits: Part I. Proton microprobe analyses of pyrite, chalcopyrite, sphalerite, and Part II. Selenium levels in pyrite: comparison with 534S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Economic Geology, 90, 11671196.CrossRefGoogle Scholar
IGME (Instituto Geologico y Minero de Espana) (1974 Mapa Geologico de Espana. Escala 1:50,000. Hoja 1046 (24-42): Sorbas. Servicio de publicaciones Ministerio de Industria.Google Scholar
Kostov, I. and Minceva-Stefanova, J. (1981 Sulphide Minerals. Crystal Chemistry, Paragenesis and Systematics. Bulgarian Academy of Sciences, 212 pp.Google Scholar
Larocque, A.C.L., Jackman, J.A., Cabri, L.J. and Hodgson, C.J. (1995 Calibration of the ion micro-probe for the determination of silver in pyrite and chalcopyrite from the Mobrun VMS deposit, Rouyn-Noranada, Quebec. The Canadian Mineralogist, 33, 361372.Google Scholar
Lopez Ruiz, J. and Rodriguez Badiola, E. (1980 La region volcanica del sureste de Espana. Estudios Geologicos, 36, 563.Google Scholar
Mao, S.E. (1991 Occurrence and distribution of invisible gold in a Carlin-type gold deposit in China. American Mineralogist, 76, 19641972.Google Scholar
Morales Ruano, S. (1994 Mineralogia, geoquimica y metalogenia de los yacimientos hidrotermales del SE de Espana. PhD thesis, Universidad de Granada, Spain, 254 pp.Google Scholar
Morales Ruano, S., Carrillo Rosiia, F.J., Fenoll-Hach-Ali., P., de la Fuente Chacon, F. and Contreras Lopez, E. (1999 The Au-Cu epithermal deposit at Palai-Islica deposit (Almeria, Southeastern Spain) Preliminary data. Pp. 5962 in: Mineral Deposits: Processes to Processing (Stanley, C.J. et al., editors). Balkema, Rotterdam, The Netherlands.Google Scholar
Morales Ruano, S., Carrillo Rosiia, F.J., Fenoll-Hach-Ali., P., de la Fuente Chacon, F. and Contreras Lopez, E. (2000 Epithermal Cu-Au mineralisation in the Palai-Islica deposit, Almeria, Southeastern Spain, fluid inclusion evidence of mixing of fluids as a guide to gold mineralisation. The Canadian Mineralogist, 38, 553566.CrossRefGoogle Scholar
Murowchick, J.B. and Barnes, H.L. (1986 Marcasite precipitation from hydrothermal solutions. Geochimica et Cosmochimica Ada, 50, 26152629.CrossRefGoogle Scholar
Murowchick, J.B. and H.L., Barnes (1987 Effects of temperature and degree of supersaturation on pyrite morphology. American Mineralogist, 72, 12411250.Google Scholar
Pouchou, J.L. and Pichoir, F. (1984 Un nouveau modele de calcul pour la microanalyse quantitative per spectrometrie de rayons X. La Reserche Aerospatiale, 3, 167192.Google Scholar
Ramdohr, P. (1980 The Ore Minerals and their Inter growths. Pergamon Press, Oxford, UK, 1202 pp.Google Scholar
Roberts, F.I. (1982 Trace element chemistry of pyrite: a useful guide to the occurrence of sulphide base metal mineralisation. Journal of Geochemical Exploration, 17,4962.CrossRefGoogle Scholar
Roedder, E. (1968 The noncolloidal origin of ‘collomorphic’ textures in sphalerite ores. Economic Geology, 63, 451471.CrossRefGoogle Scholar
Rosier, H.J. (1983 Lehrbuch der Mineralogie. VEB Deutscher Verlag fur Grundstoffindustrie, Leipzig, Germany, 886 pp.Google Scholar
Rypley, E.M. and S.L., Chryssoulis (1994 Ion micro-probe analysis of platinum-group elements in sulphide and arsenide minerals from the Babbitt Cu-Ni deposit, Duljth complex, Minnesota. Economic Geology, 89, 201210.CrossRefGoogle Scholar
Savage, K.S., Tingle, T.N., O'Day, P.A., Waychunas, G.A. and Bird, D.K. (2000 Arsenic speciation in pyrite and secondary weathering phases, Mother Lode Gold District, Tuolumne County, California. Applied Geochemistry, 15, 12191244.CrossRefGoogle Scholar
Simon, G., H., Huang, Penner-Hahn, J.E., Kesler, S.E. and Kao, L.H. (1999 Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. American Mineralogist, 84, 10711079.CrossRefGoogle Scholar
Sunagawa, I. (1957 Variation in the crystal habit of pyrite. Geological Survey of Japan Report, 175, 147.Google Scholar
Tompkins, L.A., Groves, D.I., Windrim, D.P., Jablonski, W. and Griffin, W.L. (1997 Petrology, mineral chemistry, and significance of Fe-sulphides from the metal dispersion halo surrounding the Cadjebut Zn-Pb MTV deposit, Western Australia. Applied Geochemistry, 12, 3754.CrossRefGoogle Scholar
Turner, S.P., Platt, J.P., George, R.M.M., Kelley, S.P., Pearson, D.G. and Nowell, G.M. (1999 Magmatism associated with orogenic collapse of the Betic- Alboran domain, SE Spain. Journal of Petrology, 40, 10111036.CrossRefGoogle Scholar
Wilkin, R.T. and Barnes, H.L. (1997 Formation processes of framboidal pyrite. Geochimica et Cosmochimica Acta, 61, 323339.CrossRefGoogle Scholar