Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T19:40:55.144Z Has data issue: false hasContentIssue false

The iron end-member of the pyrosmalite series from the Pegmont lead-zinc deposit, Queensland

Published online by Cambridge University Press:  05 July 2018

J. P. Vaughan*
Affiliation:
Department of Mineral Exploration and Mining Geology, Western Australian School of Mines, Kalgoorlie, Western Australia 6430

Abstract

Pyrosmalite [(Mn,Fe)8(OH,Cl)10Si6O15] has been identified by X-ray diffraction from the Pegmont lead-zinc deposit, north-west Queensland. Microprobe analyses indicate that it is the first reported occurrence of an extremely iron-rich member of the series. The characteristically high chlorine content of pyrosmalite in Pegmont and other similar base metal deposits may provide some evidence concerning the depositional environment of these stratiform Pb-Zn ores.

Type
Mineralogy
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bauer, L.H., and Berman, H. (1928) Am. Mineral. 13, 341-8.Google Scholar
Brown, P.E. (1959) Mineral. Mag. 32, 242-4.Google Scholar
Costa, U.R., Barnett, R.L., and Kerrich, R. (1983) Econ. Geol. 78, 1144-203.CrossRefGoogle Scholar
Fleischer, M. (1975) Glossary of Mineral Specie. Mineralogical Record Inc., Bowie, Maryland.Google Scholar
Frondel, C, and Bauer, L.H. (1953) Am. Mineral. 38, 755-60.Google Scholar
Hintze, C. (1897) Handbuch der Mineralogie. 2, 510-14.Google Scholar
Button, C.O. (1956) Am. Mineral. 41, 581-91.Google Scholar
Johnson, I.R., and Klingner, G.D. (1975) In Economic Geology of Australia and Papua New Guinea—. Metals,(C. L. Knight, ed.) Australas. Inst. Min. Metall., Melbourne, Australia, pp. 476-91.Google Scholar
Kayupova, M.M. (1964) Dokl. Akad. Nauk SSSR. 159, 82-5.Google Scholar
Kazachencko, V.T., Narnov, G.A., Chubarov, V.M., Shcheka, Zh. A., and Romanenko, I.M. (1979) Neues Jahrb. Mineral. Abh. 137, 20-41.Google Scholar
McAndrew, J. (1971) Clay Minerals. 9, 253-7.CrossRefGoogle Scholar
Plimer, I.R. (1984) Austral. J. Earth Sci. 31, 379-402.CrossRefGoogle Scholar
Stanton, R.L. (1972a) Ore Petrolog. McGraw-Hill, New York.Google Scholar
Stanton, R.L. (1972b) Econ. Geol. 67, 1128-45.CrossRefGoogle Scholar
Stanton, R.L. (1982) Trans. Inst. Min. Metal. Sect. B, 91, 72-9.Google Scholar
Stanton, R.L. and Vaughan, J.P. (1979) Proc. Australas. Inst. Mining Metall. 270, 25-38.Google Scholar
Stillwell, F., and McAndrew, J. (1957) Mineral. Mag. 31, 371-80.Google Scholar
Vaughan, J.P. (1980) Ph.D. thesis, University of New England, Armidale, Australia.Google Scholar
Ware, N.G. (1981) Computers and Geosdences. 7, 167-84.CrossRefGoogle Scholar
Watanabe, T., Kato, A., and Ito, J. (1961) Mineral. J. 3, 130-8.CrossRefGoogle Scholar
Winchell, A.N., and Winchell, H. (1951) Elements of Optical Mineralog. Part II, 4th edn., Wiley, New York, p. 359.Google Scholar
Zambonini, F. (1901) Z. Krystallogr. Mineral. 34, 554-61.Google Scholar