Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-06T09:47:09.252Z Has data issue: false hasContentIssue false

Infrared and Raman spectra of ZrSiO4 experimentally shocked at high pressures

Published online by Cambridge University Press:  05 July 2018

A. Gucsik
Affiliation:
Institute of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
M. Zhang*
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
C. Koeberl
Affiliation:
Institute of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
E. K. H. Salje
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
S. A. T. Redfern
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
J. M. Pruneda
Affiliation:
Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
*

Abstract

Zircon- and reidite-type ZrSiO4 produced by shock recovery experiments at different pressures have been studied using infrared (IR) and Raman spectroscopy. The v3 vibration of the SiO4 group in shocked natural zircon shows a spectral change similar to that seen in radiation-damaged zircon: a decrease in frequency and increase in linewidth. The observation could imply a possible similar defective crystal structure between the damaged and shocked zircon. The shock-pressure-induced structural phase transition from zircon (I41/amd) to reidite (I41/a) is proven by the occurrence of additional IR and Raman bands. Although the SiO4 groups in both zircon- and reidite-ZrSiO4 are isolated, the more condensed scheelite gives rise to Si–O stretching bands at lower frequencies, suggesting a weakening of the bond strength. Low-temperature IR data of the reidite-type ZrSiO4 show an insignificant effect of cooling on the phonon modes, suggesting that the structural response of reidite to cooling-induced compression is weak and its thermal expansion is very small.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, E.B., Burakov, B.E. and Vasiliev, V.G. (1993) Creation of a crystalline matrix for actinide waste at Khlopin Radium Institute. Proceedings of Safe Waste, 93, 2, 2933.Google Scholar
Bohor, B.F., Betterton, W.J. and Krogh, T.E. (1993) Impact-shocked zircons – Discovery of shock-induced textures reflecting increasing degrees of shock metamorphism. Earth and Planetary Science Letters, 119, 419424.CrossRefGoogle Scholar
Carlone, C. (1992) Raman spectrum of zirconia-hafnia mixed crystals. Physical Review B, 45B, 20792084.CrossRefGoogle Scholar
Dawson, P., Hargreave, M.M. and Wilkinson, G.F (1971) The vibrational spectrum of zircon (ZrSiO4). Journal of Physics C: Solid State Physics, 4, 240256.Google Scholar
Deutsch, A. and Schärer, U. (1990) Isotope systematics and shock-waveme tamorphism: I. U-Pb in zircon, titanite, and monazite, shocked experimentally up to 59 GPa. Geochimica et Cosmochimica Acta, 54, 34273434.Google Scholar
Duclos, S.J., Jayaraman, A., Espinosa, G.P., Cooper, A.S. and Maines, R.G. (1989) Raman and optical absorption studies of the pressure-induced zircon to scheelite structure transition in TbVO4 and DyVO4 . Journal of Physics and Chemistry of Solids, 50, 769775.CrossRefGoogle Scholar
Ewing, R.C. (1994) The metamict state: 1993 – the centennial. Nuclear Instruments and Methods in Physics Research, B91, 2229.CrossRefGoogle Scholar
Ewing, R.C., Lutze, W. and Weber, W. J. (1995) Zircon – a host-phase for the disposal of weapons plutonium. Journal of Materials Research, 10, 243246.CrossRefGoogle Scholar
Ewing, R.C., Meldrum, A., Wang, L.M., Weber, W.J. and Corrales, L.R. (2003) Radiation effects in zircon. Pp. 387425 in: Zircon (Hanchar, J.M. and Hoskin, P.W.O., editors). Reviews in Mineralogy and Geochemistry, 53, Mineralogical Society of America, Washington D.C.CrossRefGoogle Scholar
Farnan, I., Balan, E., Pickard, C.J. and Mauri, F. (2003) The effect of radiation damage on the local structure in the crystalline fraction of ZrSiO4: Investigating the 29Si NMR response to pressure in zircon and reidite. American Mineralogist, 88, 16631667.CrossRefGoogle Scholar
Geisler, T., Ulonska, M., Schleicher, H., Pidgeon, R.T. and van Bronswijk, W. (2001 a) Leaching and differential recrystallization of metamict zircon under experimental hydrothermal conditions. Contributions to Mineralogy and Petrology, 141, 5365.Google Scholar
Geisler, T., Pidgeon, R.T., van Bronswijk, W. and Pleysier, R. (2001 b) Kinetics of thermal recovery and recrystallization of partially metamict zircon: a Raman spectroscopic study. European Journal of Mineralogy, 13, 1631176.CrossRefGoogle Scholar
Glass, B.P. and Liu, S. (2001) Discovery of high-pressure ZrSiO4 polymorph in naturally occurring shock-metamorphosed zircons. Geology, 29, 371373.2.0.CO;2>CrossRefGoogle Scholar
Glass, B.P., Liu, S. and Leavens, P.B. (2002) Reidite: An impact-produced high-pressure polymorph of zircon found in marine sediments. American Mineralogist, 87, 562565.Google Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Reimold, W.U. and Libowitzky, E. (2002) Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock-metamorphosed zircon. Earth and Planetary Science Letters, 202, 495509.CrossRefGoogle Scholar
Gucsik, A., Koeberl, C., Brandstätter, F., Libowitzky, E. and Reimold, W.U. (2004) Cathodoluminescence, electron microscopy, and Raman spectroscopy of experimentally shock metamorphosed zircon crystals and naturally shocked zircon from the Ries impact crater. Pp 281322 in: Cratering in Marine Environments and on Ice (Dypvik, H., Burchell, M. and Claeys, Ph., editors). Springer-Verlag, Heidelberg, Germany.CrossRefGoogle Scholar
Hazen, R.M. and Finger, L.W. (1979) Crystal structure and compressibility of zircon at high pressure. American Mineralogist, 64, 157161.Google Scholar
Hirata, T., Asari, E. and Kitajima, M. (1994) Infrared and Raman spectroscopic studies of ZrO2 polymorphs doped with Y2O3 or CeO2 . Journal of Solid State Chemistry, 110, 201207.CrossRefGoogle Scholar
Jayaraman, A., Kourouklis, G.A., Espinosa, G.P., Cooper, A.S., Vanuitert, L.G. (1987) A high-pressure Raman-study of yttrium vanadate(YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. Journal of Physics and Chemistry of Solids, 48, 755759.CrossRefGoogle Scholar
Kim, D.J., Jung, H.J. and Yang, I.S. (1993) Raman spectroscopy of tetragonal zirconia solid solutions. Journal of the American Ceramic Society, 76, 21062108.CrossRefGoogle Scholar
Knittle, E. and Williams, Q. (1993) High-pressure Raman-spectroscopy of ZrSiO4 – Observation of the zircon to scheelite transition at 300 K. American Mineralogist, 78, 245252.Google Scholar
Kusaba, K., Syono, Y., Kikuchi, M. and Fukuoka, K. (1985) Shock behaviour of zircon – phase transition to scheelite structure and decomposition. Earth and Planetary Science Letters, 72, 433439.CrossRefGoogle Scholar
Kusaba, K., Yagi, T., Kikuchi, M. and Syono, Y. (1986) Structural conditions on the mechanism of the shock induced zircon to scheelite transition in ZrSiO4 . Journal of Physics and Chemistry of Solids, 47, 675679.CrossRefGoogle Scholar
Leroux, H., Reimold, W.U., Koeberl, C., Hornemann, U. and Doukhan, J.C. (1999) Experimental shock deformation in zircon: a transmission electron microscopic study. Earth and Planetary Science Letters, 169, 291301.CrossRefGoogle Scholar
Liu, L.G. (1979) High-pressure phase transitions in baddeleyite and zircon, with geophysical implications. Earth and Planetary Science Letters, 44, 390396.CrossRefGoogle Scholar
Mashimo, T., Nagayama, K. and Sawaoka, A. (1983) Shock compression of zirconia ZrO2 and zircon ZrSiO4 in the pressure range up to 150 GPa. Physics and Chemistry of Minerals, 9, 237247.CrossRefGoogle Scholar
Meldrum, A., Zinkle, S.J., Boatner, L.A. and Ewing, R.C. (1998) A transient liquid-like phase in the displacement cascades of zircon, hafnon and thorite. Nature, 395, 5658.CrossRefGoogle Scholar
Miotello, A. and Kelly, R. (1997) Revisiting the thermal-spike concept in ion-surface interactions. Nuclear Instruments and Methods in Physics Research B, 122, 458469.CrossRefGoogle Scholar
Nasdala, L., Irmer, G. and Wolf, D. (1995) The degree of metamictization in zircon: a Raman spectroscopic study. European Journal of Mineralogy, 7, 471478.CrossRefGoogle Scholar
Nasdala, L., Wenzel, M., Vavra, G., Irmer, G., Wenzel, T. and Kober, B. (2001) Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage. Contributions to Mineralogy and Petrology, 141, 125144.CrossRefGoogle Scholar
Ono, S., Tange, Y., Katayama, I. and Kikegawa, T. (2004) Equations of stateof ZrSiO4 phases in the upper mantle. American Mineralogist, 89, 185188.CrossRefGoogle Scholar
Palenik, C.S., Nasdala, L. and Ewing, R.C. (2003) Radiation damage in zircon. American Mineralogist, 88, 770781.CrossRefGoogle Scholar
Reid, A. and Ringwood, A.E. (1969) Newly observed high pressure transformations in Mn3O4, CaAl2O4, and ZrSiO4 . Earth and Planetary Science Letters, 6, 205208.CrossRefGoogle Scholar
Reimold, W.U., Lerouc, H. and Gibson, R.L. (2002) Shocked and thermally metamorphosed zircon from the Vredefort impact structure, South Africa: a transmission electron microscopic study. European Journal of Mineralogy, 14, 859868.CrossRefGoogle Scholar
Ríos, S. and Boffa-Ballaran, T. (2003) Microstructure of radiation-damaged zircon under pressure. Journal of Applied Crystallography, 36, 100610012.CrossRefGoogle Scholar
Salje, E.K.H., Chrosch, J. and Ewing, R.C. (1999) Is metamictization a phase transition? American Mineralogist, 84, 11071116.CrossRefGoogle Scholar
Scott, H.P., Williams, Q. and Knittle, E. (2000) Infrared spectra of the zircon and scheelite polymorphs of ZrSiO4 to 26 GPa. Pp. 521524 in: High Pressure Science and Technology: Proceedings of the XVII AIRAPT Conference (Manghnani, M.H., Nellis, W. and Nicol, M., editors).Google Scholar
Scott, H.P., Williams, Q. and Knittle, E. (2002) Ultralow compressibility silicate without highly coordinated silicon. Physical Review Letters, 88, art. no. 015506.Google Scholar
Stöffler, D. and Langenhorst, F (1994) Shock metamorphism of quartz in nature and experiment: I. Basic observation and theory. Meteoritics, 29, 155181.Google Scholar
Stubican, V.S. and Roy, R. (1963) Relation of equilibrium phase-transition pressure to ionic radii. Journal of Applied Physics, 34, 18881890.CrossRefGoogle Scholar
Trachenko, K., Dove, M.T. and Salje, E.K.H. (2002) Structural changes in zircon under α-decay irradiation. Physical Review B, 65, art.18102(R).Google Scholar
van Westrenen, W., Frank, M.R., Hanchar, J.M., Fei, Y.W., Finch, R.J. and Zha, C.S. (2004) In situ determination of the compressibility of synthetic purezircon (ZrSiO4) and onset of the zircon–reidite phase transition. American Mineralogist, 89, 197203.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C. and Lutze, W. (1996) Performance assessment of zircon as waste form for excess weapons plutonium under deep borehole burial conditions. Materials Research Society Symposium Proceedings, 412, 2532.CrossRefGoogle Scholar
Weber, W.J., Ewing, R.C., Catlow, C.R.A., de la Rubia, T.D., Hobbs, L.W., Kinoshita, C., Matzke, H., Motta, A.T., Nastasi, M., Salje, E.H.K., Vance, E. R. and Zinkle, S.J. (1998) Radiation effects in crystalline ceramics for the immobilization of high-level waste and plutonium. Journal of Materials Research, 13, 14341484.CrossRefGoogle Scholar
Wopenka, B., Jolliff, B.L., Zinner, E. and Kremser, D.T. (1996) Trace element zoning and incipient metamictization in a lunar zircon: application of three microprobe techniques. American Mineralogist, 81, 902912.CrossRefGoogle Scholar
Zhang, M. and Salje, E.K.H (2001) Infrared spectroscopic analysis of zircon: Radiation damage and the metamict state. Journal of Physics: Condensed Matter, 13, 30573071.Google Scholar
Zhang, M., Salje, E.K.H., Capitani, G.C., Leroux, H., Clark, A.M. and Schlüter, J. (2000 a) Annealing of α-decay damage in zircon: a Raman spectroscopic study. Journal of Physics: Condensed Matter, 12, 31313148.Google Scholar
Zhang, M., Salje, E.K.H., Farnan, I., Graem-Barber, A., Danial, P., Ewing, R.C., Clark, A.M. and Leroux, H. (2000 b) Metamictization of zircon: Raman spectroscopic study. Journal of Physics: Condensed Matter, 12, 19151925.Google Scholar