Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T16:24:45.611Z Has data issue: false hasContentIssue false

Hydroniumjarosite, (H3O)+Fe3(SO4)2(OH)6, from Cerros Pintados, Chile: Single-crystal X-ray diffraction and vibrational spectroscopic study

Published online by Cambridge University Press:  05 July 2018

J. Plášil*
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, CZ–182 21, Czech Republic
R. Škoda
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, CZ–611 37, Czech Republic
K. Fejfarová
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, CZ–182 21, Czech Republic
J. Čejka
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9, CZ–193 00, Czech Republic
A. V. Kasatkin
Affiliation:
V/O "Almazjuvelirexport", Ostozhenka str., 22, block 1, 119034 Moscow, Russia
M. Dušek
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, Prague 8, CZ–182 21, Czech Republic
D. Talla
Affiliation:
Department of Geological Sciences, Masaryk University, Kotlářská 2, Brno, CZ–611 37, Czech Republic Institut für Mineralogie und Kristallographie, Althanstrabe 14, 1090–Wien, Austria
L. Lapčák
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, Prague 6, CZ–166 28, Czech Republic
V. Machovič
Affiliation:
Institute of Chemical Technology, Prague, Technická 5, Prague 6, CZ–166 28, Czech Republic Institute of Rock Structures and Mechanics ASCR, v.v.i., V Holešovičkách 41, Prague 8, CZ–182 09, Czech Republic
M. Dini
Affiliation:
Pasaje San Agustin 4045, La Serena, Chile

Abstract

The natural hydroniumjarosite sample from Cerros Pintados (Chile) was investigated by electron microprobe, single-crystal X-ray diffraction and vibrational spectroscopy (Infrared and Raman). The chemical composition of studied specimens (wt.%, mean of seven analyses) obtained from electron microprobe (in wt.%): Na2O 1.30, K2O 0.23, CaO 0.04, Fe2O3 50.49, Al2O3 0.37, SiO2 0.33, SO3 33.88, H2O (calculated on the basis of Σ(OH+H3O+) deduced from the charge balance) 13.32, total 99.98, corresponds to the empirical formula (H3O)0.77+(Na0.20K0.02)∑0.22(Fe2.95Al0.03)∑2.98 (OH)6.12[(SO4)1.97(SiO4)0.03]∑2.00 (calculated on the basis of S + Si = 2 a.p.f.u. (atoms per formula unit)). The studied hydroniumjarosite is trigonal, with space group Rm, with a = 7.3408(2), c = 17.0451(6) Å and V = 795.46(4) Å3. The refined structure architecture is consistent with known jarosite-series minerals, including synthetic hydroniumjarosite. However, in the current study the presence of H3O+ is well documented in difference Fourier maps, where characteristic positive difference Fourier maxima, with apparent trigonal symmetry, were localized in the vicinity of the O4 atom in the channel-voids of the structure. The structure of natural hydroniumjarosite, including the H atoms, was refined to R1 = 0.0166 for 2113 unique observed reflections, with Iobs>3σ(I). The present structure model, which includes the position of the H atom within the hydronium ion, is discussed with regard to the vibration spectroscopy results and earlier published density-functional theory (DFT) calculations for the alunite-like structure containing H3O+.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agilent Technologies (2012) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, UK.Google Scholar
Basciano, L.C. and Peterson, R.C. (2007) Jarositehydronium jarosite solid-solution series with full iron site occupancy: Mineralogy and crystal chemistry. American Mineralogist, 92, 14641473.CrossRefGoogle Scholar
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.CrossRefGoogle Scholar
Bisson, W.G. (2011) Crystal structures and magnetism in jarosites: model kagomé antiferromagnets. Unpublished PhD thesis, University College London, London, pp 164.Google Scholar
Breitinger, D.K., Krieglstein, R., Bogner, A., Schwab, R.G., Pimpl, T.H., Mohr, J. and Schukow, H. (1997) Vibrational spectra of synthetic minerals of the alunite and crandallite type. Journal of Molecular Structure, 408/409, 287290.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. International Union of Crystallography Monographs on Crystallography, Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244248.CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp 521–622 in: Uranium: Mineralogy, Geochemistry and the Environment, (P.C. Burns and R.J. Finch, editors). Reviews in Mineralogy & Geochemistry, 38. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Chio, Ch.H., Shrama, S.K., Ming, Li.-Ch. and Muenow, D.W. (2010) Raman spectroscopic investigation on jarosite-yavapaiite stability. Spectrochimica Acta, 75, 162171.CrossRefGoogle ScholarPubMed
Clark, R.C. and Reid, J.S. (1995) The analytical calculation of absorption in multifaceted crystals. Acta Crystallographica, A51, 887897.CrossRefGoogle Scholar
Dutrizac, J.E. and Jambor, J.L. (2000) Jarosites and their application in hydrometallurgy. Pp. 405–452 in: Sulfate Minerals – Crystallography, Geochemistry and Environmental Significance (C.N. Alpers, J.L. Jambor and D.K. Nordstrom, editors). Reviews in Mineralogy & Geochemistry, 40. Mineralogical Society of America, Washington, DC.Google Scholar
Frost, R.L., Wills, R.-A., Weier, M.L., Martens, W. and Mills, S.J. (2006) A Raman spectroscopic study of selected natural jarosites. Spectrochimica Acta, A63, 18.CrossRefGoogle ScholarPubMed
Gale, J.D., Wright, K. and Hudson-Edwards, K.A. (2010) A first-principles determination of the orientation of H3O+ in hydronium alunite. American Mineralogist, 95, 11091112.CrossRefGoogle Scholar
Gordon, S.C. (1941) Results of the Chilean Mineralogical Expedition of 1938. Part V. - Cadwaladerite, a new aluminium mineral from Cerro Pintados, Chile. Notulae Naturae of The Academy of Natural Sciences of Philadelphia, 80, 14.Google Scholar
Grohol, D. and Nocera, D.G. (2007) Magnetic disorder in the frustrated antiferromagnet jarosite arising from the H3O+–OH– Interaction. Chemistry of Materials, 19, 30613066.CrossRefGoogle Scholar
Grohol, D., Nocera, D.G. and Papoutsakis, D. (2003) Magnetism of jarosites. Physical Reviews, B67, 064401.Google Scholar
Hayes, A.A. (1844) Description and analysis of pickeringite, a native magnesian alum. American Journal of Science and Arts, 46, 360362.Google Scholar
Hendricks, S.B. (1937) The crystal structure of alunite and the jarosites. American Mineralogist, 22, 773784.Google Scholar
Kubisz, J. (1968) Rola dodatnych jonów wodorowotlenowych w minerałach. Prace Mineralogiczne 12, Polska Akademia Nauk, oddzial w Krakowie, Komisija Nauk Mineralogicznych, 75 pp.Google Scholar
Lager, G.A., Swayze, G.A., Loong, C.-K., Rotella, F.J., Richardson, J.W. and Stoffregen, R.E. (2001) Neutron spectroscopic study of synthetic alunite and oxonium-substituted alunite. The Canadian Mineralogist, 39, 11311138.CrossRefGoogle Scholar
Lane, M.D. (2007) Mid-infrared emission spectroscopy of sulfate and sulfate-bearing minerals. American Mineralogist, 92, 118.CrossRefGoogle Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H_O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Majzlan, J., Stevens, R., Boerio-Goates, J., Woodfield, B.S., Navrotsky, A., Burns, P.C., Crawford, M.K. and Amos, T.G. (2004) Thermodynamic properties, low-temperature heat-capacity anomalies and singlecrystal X-ray refinement of hydronium jarosite, (H3O)Fe3(SO4)2(OH)6. Physics and Chemistry of Minerals, 31, 518531.CrossRefGoogle Scholar
Majzlan, J., Glasnák, P., Fisher, R.A., White, M.A., Johnson, M.B., Woodfield, B. and Boerio-Goates, J. (2010) Heat capacity, entropy and magnetic properties of jarosite-group compounds. Physics and Chemistry of Minerals, 37, 635656.CrossRefGoogle Scholar
Majzlan, J., Alpers, Ch.N., Koch, Ch.B., McCleskey, R.B., Myneni, S.C.B. and Neil, J.M. (2011) Vibrational, X-ray absorption and Mössbauer spectra of sulfate minerals from the weathered massive sulfide deposit at Iron Mountain, California. Chemical Geology, 284, 296305.CrossRefGoogle Scholar
Momma, K. and Izumi, F. (2008) VESTA: a threedimensional visualization system for electronic and structural analysis. Journal of Applied Crystallography, 41, 653658.CrossRefGoogle Scholar
Murphy, P.J., Smith, A.M.L., Hudson-Ewards, K.A., Dubbin, W.E. and Wright, K. (2009) Raman and IR spectroscopic studies of alunite-supergroup compounds containing Al, Cr3+, Fe3+and V3+ at the B site. The Canadian Mineralogist, 47, 663681.CrossRefGoogle Scholar
Nakamoto, K. (1986) Infrared and Raman Spectra of Inorganic and Coordination Compounds. Wiley, New York, 484 pp.Google Scholar
Nielsen, U.G., Majzlan, J., Phillips, B., Ziliox, M. and Grey, C.P. (2007) Characterization of defects and the local environment in natural and synthetic alunite (K,Na,H3O)Al3(SO4)2(OH)6 by multi-nuclear solidstate NMR spectroscopy. American Mineralogist, 92, 587597.CrossRefGoogle Scholar
Nielsen, U.G., Majzlan, J. and Grey, C.P. (2008) Identification of local environments in defect jarosite (AFe3(SO4)2(OD)6, A = D3O, Na, K) samples by 2H MAS NMR spectroscopy. Chemistry of Materials, 20, 22342241.CrossRefGoogle Scholar
Nielsen, U.G., Heinmaa, I., Samoson, A., Majzlan, J. and Grey, C.P. (2011) Insight into the local magnetic environments and deuteron mobility in jarosite (AFe3(SO4)2(OD,OD2)6, A = K, Na, D3O) and hydronium alunite ((D3O)Al3(SO4)2(OD)6), from variable-temperature 2H MAS NMR spectroscopy. Chemistry of Materials, 23, 31763187.CrossRefGoogle Scholar
Nocera, D.G., Bartlett, B.M., Grohol, D., Papoutsakis, D. and Shores, M.P. (2004) Spin frustration in 2D Kagomé lattices: A problem for inorganic synthetic chemistry. Chemistry – European Journal, 10, 38503859.CrossRefGoogle ScholarPubMed
Palatinus, L. and Chapuis, G. (2007) Superflip – a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 451456.CrossRefGoogle Scholar
Palatinus, L. and van der Lee, A. (2008) Symmetry determination following structure solution in P1. Journal of Applied Crystallography, 41, 975984.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2006) JANA2006. The crystallographic computing system. Institute of Physics, Prague.Google Scholar
Pouchou, J.L. and Pichoir, F. (1985) ‘PAP’ (j rZ) procedure for improved quantitative microanalysis. Pp. 104–106 in: Microbeam Analysis (J.T. Armstrong, editor). San Francisco Press, San Francisco.Google Scholar
Ripmeester, J.A., Ratcliffe, C.I., Dutrizac, J.E. and Jambor, J.L. (1986) Hydronium ion in the alunitejarosite group. The Canadian Mineralogist, 24, 435447.Google Scholar
Ross, S.D. (1974) Sulphates and other oxy-anions of group VI. Pp. 423–444 in: The Infrared Spectra of Minerals (V.C. Farmer, editor), The Mineralogical Society, London.Google Scholar
Sasaki, K., Tanaike, O. and Konno, H. (1998) Distinction of jarosite-group compounds by Raman spectroscopy. The Canadian Mineralogist, 36, 12251235.Google Scholar
Sato, E., Nakai, I., Myiawaki, R. and Matsubara, S. (2009) Crystal structures of alunite family minerals: beaverite, corkite, alunite, natroalunite, jarosite, svanbergite and woodhouseite. Neues Jahrbuch für Mineralogie, Abhandlungen, 185, 313322.CrossRefGoogle Scholar
Schulze, H. (1889) Mineralogisches aus Tarapacá. Verhandlungen des Deutschen Wissenschaftlichen Vereines zu Santiago, 2, 4960.Google Scholar
Serna, C.J., Cortina, C.P. and Ramos, J.V.G. (1986) Infrared and Raman study of alunite-jarosite compounds. Spectrochimica Acta, A42, 729734.CrossRefGoogle Scholar
Spratt, H.J., Rintoul, L., Avdeev, M. and Martens, W.N. (2013) The crystal structure and vibrational spectroscopy of jarosite and alunite minerals. American Mineralogist, 98, 16331643.CrossRefGoogle Scholar
Wilkins, R.W.T., Mateen, A. and West, G.W. (1974) The spectroscopic study of oxonium ions in minerals. American Mineralogist, 59, 811819.Google Scholar
Wills, A.S. and Harrison, A. (1996) Structure and magnetism of hydronium jarosite, a model Kagomé antiferromagnet. Journal of the Chemical Society, Faraday Transactions, 92, 21612166.CrossRefGoogle Scholar
Supplementary material: File

Plášil et al. supplementary material

CIF

Download Plášil et al. supplementary material(File)
File 32.3 KB