Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-24T16:14:03.352Z Has data issue: false hasContentIssue false

High-pressure crystal structure investigation of synthetic Fe2SiO4 spinel

Published online by Cambridge University Press:  05 July 2018

F. Nestola*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy C.N.R.-IGG-UO Padova, Via Gradenigo 6, I-35131, Padova, Italy
T. Balić-Žunić
Affiliation:
Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen, Denmark
M. Koch-Müller
Affiliation:
Helmholtz-Zentrum Potsdam, GFZ, Telegrafenberg, D-14473 Potsdam, Germany
L. Secco
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
F. Princivalle
Affiliation:
Dipartimento di Geoscienze, Università di Trieste, via E. Weiss, 8 I-34127, Trieste, Italy
F. Parisi
Affiliation:
Dipartimento di Geoscienze, Università di Trieste, via E. Weiss, 8 I-34127, Trieste, Italy
A. Dal Negro
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
*

Abstract

The crystal structure of Fe2SiO4 spinel at room temperature was investigated at seven different pressures by X-ray diffraction, using a diamond anvil cell to examine the influence of Fe substitution on ringwoodite behaviour at high pressure. The results compared with those of a pure Mg endmember show that the substitution of Fe into the spinel structure causes only small changes in the compression rate of coordination polyhedra and the distortion of the octahedron. The data show that the compression rate for the octahedron and tetrahedron in (Mg,Fe)2SiO4 can be considered statistically equal for FeO6 and MgO6, as well as for SiO4 in both the endmembers. This shows why almost identical bulk moduli are reported along the solid solution in recent literature.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O.L. (1995) Equations of State of Solids for Geophysics and Ceramic Sciences. Oxford University Press, Oxford, UK, 405 pp.Google Scholar
Angel, R.J. (2004) Absorption corrections for diamondanvil cells implemented in the software package Absorb6.0. Journal of Applied Crystallography, 37, 486-492.CrossRefGoogle Scholar
Angel, R.J., Allan, D.R., Miletich, R. and Finger, L.W. (1997) The use of quartz as an internal pressure standard in high pressure crystallography. Journal of Applied Crystallography, 30, 461-466.CrossRefGoogle Scholar
Balić-Žunić, T. and Viković, I. (1996) IVTON – Program for the calculation of geometrical aspects of crystal structures and some crystal chemical applications. Journal of Applied Crystallography, 29, 305-306.CrossRefGoogle Scholar
Finger, L.W., Hazen, R.M. and Yagi, T. (1977) Highpressure crystal structures of spinel polymorphs of Fe2SiO4 and Ni2SiO4 . Carnegie Institution Washington Yearbook, 76, 504-505.Google Scholar
Ganskow, G., Boffa Ballaran, T. and Langenhorst, F. (2010) Effect of iron on the compressibility of hydrous ringwoodite. American Mineralogist, 95, 747-753.CrossRefGoogle Scholar
Hazen, R.M. (1993) Comparative compressibilities of silicate spinels: anomalous behavior of (Mg,Fe)2SiO4 . Science, 259, 206-209.CrossRefGoogle ScholarPubMed
Hazen, R.M., Downs, R.T., and Finger, L.W. (1993) Crystal chemistry of ferromagnesian silicate spinels: evidence for Mg-Si disorder. American Mineralogist, 78, 1320-1323.Google Scholar
Higo, Y., Inoue, T., Li, B., Irifune, T. and Liebermann, R.C. (2006) The effect of iron on the elastic properties of ringwoodite at high pressure. Physics of the Earth and Planetary Interiors, 159, 276-285.CrossRefGoogle Scholar
Jackson, J.M., Sinogeikin, S.V. and Bass, J.D. (2000) Sound velocities and elastic properties of g-Mg2SiO4 to 873K by Brillouin spectroscopy. American Mineralogist, 85, 296-303.CrossRefGoogle Scholar
Kudoh, Y., Kuribayashi, T., Mizobata, H., Ohtani, E., Sasaki, S. and Tanaka, M. (2007) Pressure dependence of u parameter in ringwoodite up to 7.9 GPa. Journal of Mineralogical and Petrological Sciences, 102, 8-11.CrossRefGoogle Scholar
Lavina, B., Salviulo, G. and Della Giusta, A. (2002) Cation distribution and structure modelling of spinel solid solutions. Physics and Chemistry of Minerals, 29, 10-18.CrossRefGoogle Scholar
Li, B.S. (2003) Compressional and shear wave velocities of ringwoodite g-Mg2SiO4 to 12 GPa. American Mineralogist, 88, 1312-1317.CrossRefGoogle Scholar
Makovicky, E. and Balić-Žunić, T. (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica, B54, 773-.Google Scholar
Nestola, F., Boffa Ballaran, T., Balić-Žunić, T., Princivalle, F., Secco, L. and Dal Negro, A. (2007) Comparative compressibility and structural behavior of spinel MgAl2O4 at high pressures: the independency on the degree of cation order. American Mineralogist, 92, 1838-1843.CrossRefGoogle Scholar
Nestola, F., Boffa Ballaran, T., Balić-Žunić, T., Secco, L. and Dal Negro, A. (2008) The high-pressure behavior of an Al- and Fe-rich natural orthopyroxene. American Mineralogist, 93, 644-652.CrossRefGoogle Scholar
Nestola, F., Smyth, J.R., Parisatto, M., Secco, L., Princivalle, F., Bruno, M., Prencipe, M. and Dal Negro, A. (2009) Effects of non-stoichiometry on the spinel structure at high pressure: implications for Earth's mantle mineralogy. Geochimica et Cosmochimica Acta, 73, 489-492.CrossRefGoogle Scholar
Nestola, F., Boffa Ballaran, T., Koch-Müller, M., Balić-Žunić, T., Taran, M., Olsen, L., Princivalle, F., Secco, L. and Lundegaard, L. (2010) New accurate compression data for g-Fe2SiO4 . Physics of the Earth and Planetary Interiors, 183, 421-425.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 767-.Google Scholar
Sheldrick, G.M. (1997) SHELX-97, Programs for Crystal Structure Analysis. University of Göttingen, Germany.Google Scholar
Sinogeikin, S.V., Katsura, T. and Bass, J.D. (1998) Sound velocities and elastic properties of Fe-bearing wadsleyite and ringwoodite. Journal of Geophysical Research, 103, 20819-20825.CrossRefGoogle Scholar
Weidner, D.J., Sawamoto, H., Sasaki, S. and Kumazawa, M. (1984) Single-crystal elastic properties of the spinel phase of Mg2SiO4 . Journal of Geophysical Research, 89, 7852-7860.CrossRefGoogle Scholar
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14 KB
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14 KB
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14.2 KB
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14 KB
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14.1 KB
Supplementary material: File

Nestola et al. supplementary material

Anisotropic displacement parameters + cif

Download Nestola et al. supplementary material(File)
File 14 KB