Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T08:33:03.148Z Has data issue: false hasContentIssue false

H2O and CO2 in minerals of the haüyne-sodalite group: an FTIR spectroscopy study

Published online by Cambridge University Press:  05 July 2018

F. Bellatreccia*
Affiliation:
Dipartimento di Scienze Geologiche, Universita` Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (I.N.F.N.-L.N.F.), Via Enrico Fermi 40 I- 00044 Frascati (Roma), Italy
G. Della Ventura
Affiliation:
Dipartimento di Scienze Geologiche, Universita` Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (I.N.F.N.-L.N.F.), Via Enrico Fermi 40 I- 00044 Frascati (Roma), Italy
M. Piccinini
Affiliation:
Dipartimento di Scienze Geologiche, Universita` Roma Tre, Largo S. Leonardo Murialdo 1, I-00146 Roma, Italy Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati (I.N.F.N.-L.N.F.), Via Enrico Fermi 40 I- 00044 Frascati (Roma), Italy
A. Cavallo
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia (I.N.G.V.), Via di Vigna Murata 605, I-00143 Roma, Italy
M. Brilli
Affiliation:
Istituto di Geologia Ambientale e Geoingegneria (C.N.R.-I.G.A.G.), Via Salaria km 29, 300 - C.P. 10 Monterotondo Stazione, I-00016 Roma, Italy
*

Abstract

This paper reports an infrared spectroscopic study of a set of sodalite-group minerals. The specimens have been identified using a combination of X-ray diffraction and microchemical analysis. As expected, the Si/Al ratio is ~1; the extra framework cation content is characterized by a well-defined Na ⇌ (Ca+K) substitution. The lattice parameters of the studied samples range from sodalite (sample LM11) with a = 8.889(2) Å, to haüyne (sample HR3S) with a = 9.1265(2) Å. The specimens, having the SO2– group as a dominant anion, show a clear correlation between the a cell edge and the K content. Singlecrystal FTIR spectroscopy shows that haüyne and nosean typically contain enclathrated CO2 molecules, inadditionto H2O and minor carbonate, while sodalite is virtually CO2-free. Detailed microspectrometric mappings show a non-homogeneous distribution of volatile constituents across the crystals, which may be related to the presence of fractures in the crystals. Because of such zoning, a relatively wide variation is observed when calibrating extinction coefficients on the basis of a bulk analytical method such as CHN elemental analysis.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

currently at: Porto Conte Ricerche srl SP 55 Porto Conte-Capo Caccia, km 8,300 Loc. Tramariglio, Alghero I-07041 Sassari, Italy

References

Aines, R.D. and Rossman, G.R. (1984) The high temperature behaviour of water and carbon dioxide in cordierite and beryl. American Mineralogist, 69, 319—327.Google Scholar
Armbruster, T. and Bloss, F.D. (1980) Channel CO2 in cordierites. Nature, 286, 140—141.CrossRefGoogle Scholar
Bacci, M., Cucci, C., Del Federico, E., Ienco, A., Jerschow, A., Newman, J.M. and Picollo, M. (2008) An integrated spectroscopic approach for the identification of what distinguishes Afghan lapis lazuli from others. Vibrational Spectroscopy, on-line.Google Scholar
Ballirano, P. and Maras, A. (2005) Crystal chemical and structural characterization of an unusual CO3- bearing sodalite-group mineral. European Journal of Mineralogy, 17, 805—812.Google Scholar
Ballirano, P. and Maras, A. (2006) Mineralogical characterization of the blue pigment of Michelangelo's fresco ‘The Last Judgement’. American Mineralogist, 91, 997—1005.CrossRefGoogle Scholar
Ballirano, P., Maras, A. and Buseck, P.R. (1996) Crystal chemistry and IR spectroscopy of Cl- and SO4- bearing cancrinite-like minerals. American Mineralogist, 81, 1003 — 1012.Google Scholar
Barrer, R.M. and Vaughan, D.E. (1971) Trapping of inert gases in sodalite and cancrinite crystals. Journal of Physics and Chemistry of Solids, 32, 731—743.CrossRefGoogle Scholar
Bonelli, B., Civalleri, B., Fubini, B., Ugliengo, P., Otero Arean, C. and Garrone, E. (2000) Experimental and Quantum Chemical Studies on the Adsorption of Carbon Dioxide on Alkali-Metal-Exchanged ZSM-5 Zeolites. Journal of Physical Chemistry B, 104, 10978—10988.CrossRefGoogle Scholar
Burragato, F., Maras, A. and Rossi, A. (1982) The sodalite group minerals in the volcanic areas of Latium. Neues Jahrbuch für Mineralogie Monatshefte, 433—445.Google Scholar
Cámara, F., Bellatreccia, F., Della Ventura, G. and Mottana, A. (2005) Farneseite, a new mineral of the cancrinite-sodalite group with a 14 layer stacking sequence. European Journal of Mineralogy, 17, 839—846.Google Scholar
Charoy, B., de Donato, P., Barres, O. and Pintho-Choelo, C. (1996) Channel occupancy in an alkali- poor beryl from Serra Blanca (Goias, Brazil): spectroscopic characterization. American Mineralogist, 81, 395—403.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A., Wise, W.S. and Zussman, J. (2004) Rock-Forming Minerals. Volume 4B. Framework Silicates: Silica Minerals, Feldspathoids and the Zeolites, 2nd edition. The Geological Society, London, 982pp.Google Scholar
Della Ventura, G., Bellatreccia, F. and Bonaccorsi, E. (2005) CO2 molecules in pitiglianoite, a mineral of the cancrinite-sodalite group. European Journal of Mineralogy, 17, 847—851.Google Scholar
Della Ventura, G., Bellatreccia, F., Parodi, G.C., Cámara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713—721.Google Scholar
Della Ventura, G., Bellatreccia, F. and Piccinini, M. (2008a) Channel CO2 in feldspathoids: a review of existing data and new perspectives. Rendiconti Accademia Lincei, 19, 141 — 159.CrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F. and Piccinini, M. (2008b) Presence and zoning of hydrous components in leucite from the Albani Hills volcano (Rome, Italy). American Mineralogist, 93, 1538—1544.CrossRefGoogle Scholar
Di Muro, A, Bonaccorsi, E. and Principe, C. (2004) Complex colour and chemical zoning of sodalite- group phases in a haiinophyre lava from Mt. Vulture, Italy. Mineralogical Magazine, 68, 591—614.CrossRefGoogle Scholar
De Rita, D., Funiciello, R., Rossi, U. and Sposato, A. (1983) Structure and evolution of the Sacrofano- Baccano caldera, Sabatini volcanic complex, Rome. Journal of Volcanology and Geothermal Research, 17, 219—236.CrossRefGoogle Scholar
Engelhardt, G., Felsche, J. and Sieger, P. (1992) The hydrosodalite system Na6+x[SiAlO4]6(OH)x-nH2O: formation, phase composition, and de- and rehydration studied by 1H, 23Na, and 29Si MAS-NMR spectroscopy in tandem with thermal analysis, X-ray diffraction, and IR spectrosocpy. Journal of the American Chemical Society, 114, 1173—1182.CrossRefGoogle Scholar
Federico, M., Peccerillo, A., Barbieri, M. and Wu, T.W. (1994) Mineralogical and geochemical study of granular xenoliths from the Alban Hills volcano, Central Italy: bearing on evolutionary processes in potassic magma chambers. Contributions to Mineralogy and Petrology, 115, 384—401.CrossRefGoogle Scholar
Fine, G. and Stolper, E. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contributions to Mineralogy and Petrology, 91, 105—121.CrossRefGoogle Scholar
Galitskii, V.Yu., Grechushnikov, B.N. and Sokolov, Yu.A. (1978) Form of water in cancrinite. Russian Journal of Inorganic Chemistry, 23, 1749—1750.Google Scholar
Geiger, C.A. and Kolesov, B.A. (2002) Microscopic- macroscopic relationships in silicates: examples from IR and Raman spectroscopy and heat capacity measurements. Pp. 347—387 in: Energy Modelling in Minerals (C. Gramaccioli editor). EMU Notes in Mineralogy, 4, Eötvös University Press, Budapest.Google Scholar
Gesing, Th.M. and Buhl, J.-Ch. (1998) Crystal structure of a carbonate-nosean Na8[AlSiO4]6CO3. European Journal of Mineralogy, 10, 71—77.CrossRefGoogle Scholar
Giordano, G., De Rita, D., Cas, R. and Rodani, S. (2002) Valley pond and ignimbrite veneer deposits in the small-volume phreatomagmatic ‘Peperino Albano’ basic ignimbrite, Lago Albano maar, Colli Albani volcano, Italy: influence of topography. Journal of Volcanology and Geothermal Research, 118, 131 — 144.CrossRefGoogle Scholar
Hassan, I. and Grundy, H.D. (1983) Structure of basic sodalite, Na8Al6Si6O24(OH)2-2H2O. Acta Crystallographica C, 39, 3—5.Google Scholar
Hassan, I. and Grundy, H.D. (1989) The structure of nosean, ideally Na8[Al6Si6O24]SO4-H2O. The Canadian Mineralogist, 27, 165 — 172.Google Scholar
Hassan, I., Peterson, R.C. and Grundy, H.D. (1985) The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2. Acta Crystallographica C, 41, 827—832.Google Scholar
Henderson, C.M. and Taylor, D. (1977) Infrared spectra of anhydrous members of the sodalite family. Spectrochimica Acta A, 33, 283—290.Google Scholar
Hogarth, D.D. and Griffin, W.L. (1975) Further data on lapis lazuli from Latium, Italy. The Canadian Mineralogist, 13, 89—90.Google Scholar
Hogarth, D.D. and Griffin, W.L. (1976) New data on lazurite, Lithos , 9, 39—45.CrossRefGoogle Scholar
Holland, T.J. and Redfern, S.A. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 65—77.CrossRefGoogle Scholar
Khomenko, V.M. and Langer, K. (2005) Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. American Mineralogist, 90, 1913 — 1917.CrossRefGoogle Scholar
King, P.L., Venneman, T.W., Holloway, J.R., Hervig, R.L., Lowenstern, J.B. and Forneris, J.F. (2002): Analytical techniques for volatiles: a case study using intermediate (andesitic) glasses. American Mineralogist, 87, 1077—1082.Google Scholar
Kolesov, B.A. and Geiger, C.A. (2000) Cordierite II: the role of CO2 and H2O. American Mineralogist, 85, 1265 — 1274.CrossRefGoogle Scholar
Le Breton, N. (1989) Infrared investigation of CO2- bearing cordierites. Contributions to Mineralogy and Petrology, 103, 387—396.CrossRefGoogle Scholar
Levenson, E., Lerch, P. and Martin, M.C. (2006) Infrared imaging: synchrotrons vs. arrays, resolution vs. speed. Infrared Physics & Technology, 49, 45—52.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1996) Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319—327.CrossRefGoogle Scholar
Libowitzky, E. and Rossman, G.R. (1997) An IR absorption calibration for water in minerals. American Mineralogist, 82, 1111 — 1115.CrossRefGoogle Scholar
Mandarino, J.A. and Back, M.E. (2004) Fleischer's Glossary of Mineral Species 2004. The Mineralogical Record, Tucson, Arizona, USA.Google Scholar
Mead, P.J. and Weller, M.T. (1995) Synthesis, structure, and characterization of halate sodalites: M8[AlSiO4]6(XO3)x(OH)2-x; M= Na, Li, or K; X = Cl, Br, or I. Zeolites, 15, 561—568.Google Scholar
Mundus, C., Müller-Warmuth, W. and Buhl,J.-Ch. (1996) Crystallization of a basic sodalite under hydrothermal conditions studied by MAS-NMR, XRD and DTA/DTG. European Journal of Mineralogy, 8, 231—239.CrossRefGoogle Scholar
Ostroumov, M., Fritsch, E., Falques, E. and Chauvet, O. (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. The Canadian Mineralogist, 40, 885—893.CrossRefGoogle Scholar
Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 105, 20—29.Google Scholar
Pauling, L. (1930) The structure of sodalite and helvite. Zeitschrift für Kristallographie, 74, 213—225.Google Scholar
Renzulli, A., Upton, B.G., Boyce, A. and Ellam, R.M. (1998) Petrology of quartz syenite and haiuyne syenite clasts from the Pitigliano Formation, Latera caldera, Vulsini District, Central Italy. European Journal of Mineralogy, 10, 333—354.CrossRefGoogle Scholar
Ross, S.D. (1974) Sulphates and other oxy-anions of Group VI. Pp. 423—444 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). The Mineralogical Society, London.Google Scholar
Rouquerol, J., Avnir, D., Fairbridge, C.W., Everett, D.H., Haynes, J.H., Pericone, N., Ramsay, J.D., Sing, K.S. and Unger, K.K (1994). Recommendations for the characterization of porous solids. Pure and Applied Chemistry, 66, 1739—1758.Google Scholar
Schwarcz, H.P. and Spellman, E.L. (1965) Determination of sulphur and carbon coordination in scapolite by infra-red absorption spectrophotometry. American Mineralogist, 50, 656—666.Google Scholar
Smith, G.D. and Klinshaw II, R.J. (2008) The presence of trapped carbon dioxide in lapis lazuli and its use in geo-sourcing natural ultramarine pigment. Journal of Cultural Heritage, 10, 415—421.Google Scholar
Taylor, D. (1967) The sodalite group of minerals. Contributions to Mineralogy and Petrology, 16, 172—188.CrossRefGoogle Scholar
Thomas, S.-M., Koch-Muller, M., Reichart, P., Rhede, D., Thomas, R., Wirth, R. and Matsyuk, S. (2009) IR calibrations for water determination in olivine, r-GeO2, and SiO2 polymorphs. Physics and Chemistry of Minerals, on-line.CrossRefGoogle Scholar
Van Peteghem, J.K. and Burley, B.J. (1963) Studies on solid solution between sodalite, nosean and haiuyne. The Canadian Mineralogist, 7, 808—813.Google Scholar
White, W.B. (1974) The carbonate minerals. Pp. 227—284 in: The Infrared Spectra of Minerals (V.C. Farmer, editor). The Mineralogical Society, London.Google Scholar
Wiebcke, M., Engelhardt, G., Felsche, J., Kempa, P.B., Sieger, P., Schefer, J. and Fischer, P. (1992) Orientational disorder of the hydrogen dihydroxide anion, O2H, in sodium hydroxosodalite dihydrate, Na8[Al6Si6O24](OH)2-2H2O: single-crystal X-ray and powder neutron diffraction and MAS NMR and FTIR spectroscopy. Journal of Physical Chemistry, 96, 392—397.CrossRefGoogle Scholar
Wood, D.L. and Nassau, K. (1967) Infrared spectra of foreign molecules in beryl. Journal of Chemical Physics, 47, 2220—2228.CrossRefGoogle Scholar
Wyart, J., Bariand, P. and Filippi, J. (1981) Lapis-lazuli from Sar-e-Sang, Badakhshan, Afghanistan. Gems and Gemology, 17, 184—190.CrossRefGoogle Scholar
Wysoczanski, R. and Tani, K. (2006) Spectroscopic FTIR imaging of water species in silicic volcanic glasses and melt inclusions: an example from the Izu-Bonin arc. Journal of Volcanology and Geothermal Research, 156, 302—314.CrossRefGoogle Scholar
Zillio, S.C. and Bagnato, V.S. (1984) Infrared spectra of natural zeolite. Journal of Physical Chemistry, 88, 1373 — 1376.CrossRefGoogle Scholar