Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T01:12:22.908Z Has data issue: false hasContentIssue false

Gurzhiite, Al(UO2)(SO4)2F⋅10H2O, a new uranyl sulfate mineral with a chain structure from the Bykogorskoe deposit, Northern Caucasus, Russia

Published online by Cambridge University Press:  12 May 2022

Anatoly V. Kasatkin*
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Jakub Plášil
Affiliation:
Institute of Physics of the CAS, Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics of the Russian Academy of Sciences, 142432 Chernogolovka, Moscow region, Russia
Radek Škoda
Affiliation:
Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
Fabrizio Nestola
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
Dmitry I. Belakovskiy
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
*
*Author for correspondence: Anatoly V. Kasatkin, Email: [email protected]

Abstract

Gurzhiite, ideally Al(UO2)(SO4)2F⋅10H2O, is a new uranyl sulfate mineral from the Bykogorskoe U deposit, Northern Caucasus, Russia. It occurs as fine-grained aggregates forming veinlets up to 50 cm long in cracks of the brecciated rock. Gurzhiite aggregates are composed of small bladed crystals up to 0.1 mm across. Associated minerals include khademite and quartz. Gurzhiite is pale yellow in crystals, lemon yellow in aggregates, transparent with a vitreous lustre and a white streak. It is brittle and has an irregular fracture. Cleavage is good on {001}. The new mineral exhibits a bright yellow–green fluorescence under both longwave and shortwave UV radiation. Mohs hardness is ~2. Dmeas = 2.52(3) g/cm3 and Dcalc = 2.605 g/cm3. The mineral is biaxial (–) with α = 1.528(3), β = 1.538(2), γ = 1.544(3) (589 nm); 2Vmeas= 80(10)° and 2Vcalc = 75.1°. The empirical formula calculated on the basis of 21(O + F) atoms per formula unit (apfu) is Al0.92Zn0.05Fe3+0.03Na0.03U0.95S2.00O9.85F0.99⋅10.16H2O. Gurzhiite is triclinic, with space group P$\bar{1}$, a = 7.193(2), b = 11.760(2), c = 11.792(2) Å, α = 67.20(3), β = 107.76(3), γ = 89.99(3)°, V = 867.7(4) Å3 and Z = 2. The five strongest lines of the powder X-ray diffraction pattern [d, Å (I, %)(hkl)] are: 10.24(100)(001); 5.40(14)($\bar{ 1}\bar{1}$1); 5.11(54)(002); 3.405(11)($\bar{2}$11); and 3.065(11)($\bar{1}\bar{1}$3). The crystal structure of gurzhiite is based upon uranyl sulfate chains of the same type as in bobcookite and svornostite. Between the chains are two types of Al-octahedra – Al1(H2O)6 and Al2F2(H2O)4. The entire structure stability is maintained by a complex network of H bonds. The new mineral honours Russian mineralogist and crystallographer Dr. Vladislav V. Gurzhiy in recognition for his contributions to uranium mineralogy and crystallography.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Daniel Atencio

References

Belova, L.N. and Tseitlin, S.G. (1959) Mineralogical Features of Oxidation Zones of Beshtau and Byk Deposits. Geolfond IGEM RAN, Moscow, 34 pp. [in Russian].Google Scholar
Blatov, V.A., Shevchenko, A.P. and Proserpio, D.M. (2014) Applied topological analysis of crystal structures with the program package ToposPro. Crystal Growth & Design, 14, 35763586.CrossRefGoogle Scholar
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry: The Bond Valence Model. Oxford University Press, Oxford, UK.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallographica, B41, 244248.CrossRefGoogle Scholar
Čejka, J. (1999) Infrared spectroscopy and thermal analysis of the uranyl minerals. Pp. 521622 in: Uranium: Mineralogy, Geochemistry, and the Environment (Burns, P.C. and Finch, R.J., editors). 38. Mineralogical Society of America, Washington DC, USA.CrossRefGoogle Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer, Cham–Heidelberg–Dordrecht–New York–London, 1109 pp.CrossRefGoogle Scholar
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
Gurzhiy, V.V. and Plášil, J. (2019) Structural complexity of natural uranyl sulfates. Acta Crystallographica, B75, 3948.Google Scholar
Gurzhiy, V.V., Tyumentseva, O.S., Krivovichev, S.V., Krivovichev, V.G. and Tananaev, I.G. (2016) Mixed uranyl sulfate-selenates: variable composition and crystal structures. Crystal Growth and Design, 16, 44824492.CrossRefGoogle Scholar
Gurzhiy, V.V., Krzhizhanovskaya, M.G., Izatulina, A.R., Sigmon, G.E., Krivovichev, S.V. and Burns, P.C. (2018) Structure refinement and thermal stability studies of the uranyl carbonate mineral andersonite, Na2Ca[(UO2)(CO3)3]⋅(5+x)H2O. Minerals, 8, 586.CrossRefGoogle Scholar
Gurzhiy, V.V., Kuporev, I.V., Kovrugin, V.N., Murashko, M.N., Kasatkin, A.V. and Plášil, J. (2019) Crystal chemistry and structural complexity of natural and synthetic uranyl selenites. Crystals, 9, 639.CrossRefGoogle Scholar
Gurzhiy, V.V., Izatulina, A.R., Krzhizhanovskaya, M.G., Murashko, M.N., Spiridonova, D.V., Shilovskikh, V.V. and Krivovichev, S.V. (2020) Thermal behavior of uranyl selenite minerals derriksite and demesmaekerite. Journal of Geosciences, 65, 249259.CrossRefGoogle Scholar
Gurzhiy, V.V., Kalashnikova, S.A., Kuporev, I.V. and Plášil, J. (2021) Crystal chemistry and structural complexity of the uranyl carbonate minerals and synthetic compounds. Crystals, 11, 704.CrossRefGoogle Scholar
Hawthorne, F.C. and Sokolova, E. (2012) The role of H2O in controlling bond topology: I. The [6]Mg(SO4)(H2O)n (n = 0–11) structures. Zeitschrift für Kristallographie, 227, 594603.CrossRefGoogle Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V. and Marty, J. (2015a) Bobcookite, NaAl(UO2)2(SO4)4(H2O)18, and wetherillite, Na2Mg(UO2)2(SO4)4⋅18H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 695714.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Marty, J. and Čejka, J. (2015b) Fermiite, Na4(UO2)(SO4)3⋅3H2O and oppenheimerite, Na2(UO2)(SO4)2⋅3H2O, two new uranyl sulfate minerals from the Blue Lizard mine, San Juan County, Utah, USA. Mineralogical Magazine, 79, 11231142.CrossRefGoogle Scholar
Kampf, A.R., Sejkora, J., Witzke, T., Plášil, J., Čejka, J., Nash, B.P. and Marty, J. (2017) Rietveldite, Fe(UO2)(SO4)2(H2O)5, a new uranyl sulfate mineral from Giveaway-Simplot mine (Utah, USA), Willi Agatz mine (Saxony, Germany) and Jáchymov (Czech Republic). Journal of Geosciences, 62, 107120.CrossRefGoogle Scholar
Kampf, A.R., Plášil, J., Kasatkin, A.V., Nash, B.P. and Marty, J. (2019) Magnesioleydetite and straβmannite, two new uranyl sulfate minerals with sheet structures from Red Canyon, Utah. Mineralogical Magazine, 83, 349360.CrossRefGoogle Scholar
Kasatkin, A.V., Plášil, J., Chukanov, N.V., Škoda, R., Nestola, F., Agakhanov, A.A. and Belakovskiy, D.I. (2022) Gurzhiite, IMA 2021-086. CNMNC Newsletter No. 65. Mineralogical Magazine, 86, 354358, https://doi.org/10.1180/mgm.2022.14Google Scholar
Krivovichev, S.V. (2013) Structural complexity of minerals: information storage and processing in the mineral world. Mineralogical Magazine, 77, 275326.CrossRefGoogle Scholar
Krivovichev, S.V. and Plášil, J. (2013) Mineralogy and crystallography of uranium. Pp. 15119 in: Uranium: from Cradle to Grave (Burns, P.C. and Sigmon, G.E., editors). MAC Short Courses, Vol. 43. Mineralogical Association of Canada, Québec, Canada.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Ling, J., Sigmon, G.E., Ward, M., Roback, N. and Burns, P.C. (2010) Syntheses, structures, and IR spectroscopic characterization of new uranyl sulfate/selenate 1D-chain, 2D-sheet and 3D framework. Zeitschrift für Kristallographie, 225, 230239.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone–Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Merlet, C. (1994) An Accurate Computer Correction Program for Quantitative Electron Probe Microanalysis. Microchimica Acta, 114/115, 363376.CrossRefGoogle Scholar
Nakamoto, K. (2008) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Theory and Applications in Inorganic Chemistry. John Wiley and Sons, New York.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley and Sons, Hoboken, New York.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.CrossRefGoogle Scholar
Petříček, V., Dušek, M. and Plášil, J. (2016) Crystallographic computing system Jana2006: Solution and refinement of twinned structures. Zeitschrift für Kristallographie, 231, 583599.CrossRefGoogle Scholar
Plášil, J. (2014) Oxidation-hydration weathering of uraninite: the current state-of-knowledge. Journal of Geosciences, 59, 99114.CrossRefGoogle Scholar
Plášil, J., Hloušek, J., Kasatkin, A.V., Novák, M., Čejka, J. and Lapčák, L. (2015) Svornostite, K2Mg[(UO2)(SO4)2]2⋅8H2O, a new uranyl sulfate mineral from Jáchymov, Czech Republic. Journal of Geosciences, 60, 113121.CrossRefGoogle Scholar
Plášil, J., Kampf, A.R., Ma, C. and Desor, J. (2021) Oldsite, IMA 2021-075. CNMNC Newsletter 64. Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.93Google Scholar
Sheldrick, G.M. (2015) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Tabachenko, V.V., Serezhkin, V.I., Serezhkina, L.B. and Kovba, L.M (1979) Crystal structure of manganese sulfatouranylate MnUO2(SO4)2(H2O)5. Koordinatsionnaya Khimiya, 5, 15631568.Google Scholar
Supplementary material: File

Kasatkin et al. supplementary material

Kasatkin et al. supplementary material

Download Kasatkin et al. supplementary material(File)
File 292.2 KB