Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T12:11:31.190Z Has data issue: false hasContentIssue false

Graphite-bearing peraluminous dacites from the Erlend volcanic complex, Faeroe-Shetland Basin, North Atlantic

Published online by Cambridge University Press:  05 July 2018

Raymond Kanaris-Sotiriou*
Affiliation:
Department of Earth Sciences, University of Sheffield, Dainton Building, Brookhill, Sheffield, S3 7HF, UK

Abstract

Strongly peraluminous, cordierite-bearing anatectic dacites from the offshore Tertiary Erlend volcanic centre, north of the Shetland Isles, are shown to contain graphite which is interpreted as being essentially a restite phase inherited from carbonaceous pelitic source rocks. The form and characteristics of the graphite are documented and graphite geothermometry applied to establish that the graphite records a minimum peak temperature of ∼800°C, confirming that temperatures at which anatexis occurs were attained. The different morphological forms of graphite observed suggest the possibility that minor amounts of fluid-deposited graphite may also be present. The chemistry of the Erlend dacites is compared with that of other known examples of graphite-bearing peraluminous silicic igneous rocks and briefly with experimentally generated peraluminous liquid compositions. The Erlend source rocks were probably subjected to a higher degree of partial melting than has occurred in the petrogenesis of many other anatectic peraluminous silicic rocks.

Type
Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bénard, F, Moutou, P. and Pichavant, M. (1985) Phase relationships of tourmaline leucogranites and the significance of tourmaline in silicic magmas. J. Geol., 93, 271-91.CrossRefGoogle Scholar
Clemens, J.D. and Wall, V.J. (1988) Origin and crystallization of some peraluminous (S-type) granitic magmas. Canad. Mineral., 19, 111—31.Google Scholar
Duke, E.F and Rumble, D. (1985) Textural and isotopic variations in graphite from plutonic rocks, South-Central New Hampshire. Contrib. Mineral. Petrol., 93, 409-19.CrossRefGoogle Scholar
Frezzotti, M.L., Di Vincenzo, G., Ghezzo, C. and Burke, E.A.J. (1994) Evidence of magmatic CO2-rich fluids in peraluminous graphite-bearing leucogranites from Deep Freeze Range (northern Victoria Land, Antarctica). Contrib. Mineral. Petrol., 117, 111-23.CrossRefGoogle Scholar
Gatliff, R.W., Hitchen, K., Ritchie, J.D. and Smythe, D.K (1984) Internal structure of the Erlend Tertiary volcanic complex, north of Shetland, revealed by seismic reflection. J. Geol. Soc., London, 141, 555-62.CrossRefGoogle Scholar
Green, T.H. (1976) Experimental generation of cordierire- or garnet-bearing granitic liquids from a pelitic composition. Geology, 4, 85—8.2.0.CO;2>CrossRefGoogle Scholar
Kanaris-Sotiriou, R., Morton, A.C. and Taylor, P.N. (1993) Palaeogene peraluminous magmatism, crustal melting and continental break-up: the Erlend complex, Faeroe-Shetland Bason, NE Atlantic. J. GeoL Soc., London, 150, 903-14.CrossRefGoogle Scholar
Luque, F.J. (1990) Contribución al conocimiento de las mineralizaciones de grafito asociados a las rocas ultrabásicas de la provincia de Málaga. Ph.D Thesis. Servicio de Publicaciones de la Universidad Complutense, Madrid. 293 pp.Google Scholar
Luque, F.J., Rodas, M., Velasco, F. and Galan, E. (1987) Mineralogía y geotermometría de los cliques áicidos con grafito asociados a rocas ultrámfificas de la Serranía de Ronda, Máilaga. Estudios Geólogicos, 43, 367-75.Google Scholar
Luque, F.J., Barrenechea, J.F., and Rodas, M. (1993) Graphite geothermometry in low and high temperature regimes: two case studies. Geol. Mag., 130, 501-11.CrossRefGoogle Scholar
Luque, F.J., Rodas, M, and Barrenechea, J.F. (1995) Fluid-deposited graphite mineralisations in different geological settings. In Mineral Deposits: from their Origin to their Environmental Impact. (Paava, J., Kríek, B and Záik, K., eds.) Proceedings of the third biennial SGA meeting, Prague, 1995. Balkema, Rotterdam.Google Scholar
Luth, W.C. (1976) Granitic rocks. In The Evolution of the Crystalline Rocks (Bailey, D.K. and MacDonald, R., eds.). Academic Press. New York. 335417.Google Scholar
Middlemost, E.A.K. (1989) Iron oxidation ratios, norms and the classification of volcanic rocks. Chem. Geol., 77, 19-26.CrossRefGoogle Scholar
Miller, C.F. (1985) Are strongly peraluminous magmas derived from pelitic sedimentary sources. J. Geol, 93, 673-89.CrossRefGoogle Scholar
Morton, A.C., Dixon, J.E., Fitton, J.G., Macintyre, R.M., Smythe, D.K. and Taylor, P.N. (1988) Early Tertiary volcanic rocks in Well 163/6-1A, Rockall Trough. In Early Tertiary Volcanism and the Opening of the NE Atlantic. (Morton, A.C. and Parson, L.M., eds.) Geological Society London, Special Publications. 39, 293308.Google Scholar
Parson, L.M., Viereck, L.G., Love, D., Gibson, I., Morton, A.C. and Hertogen, J. (1989) The petrology of the Lower Series volcanics, ODP site 642. In Proceedings of the Ocean Drilling Program, scientific results. (Eldholm, O., Thiede, J., Taylor, E., eds.), 104B, 9931030.Google Scholar
Patiño Douce, A.E. (1992) Calculated relationships between activity of alumina and phase assemblages of silica-saturated igneous rocks: Petrogenetic implications of magmatic cordierites, garnet and aluminosilicate. J. Volcanol. Geotherm. Res., 52, 43-63.CrossRefGoogle Scholar
Pedersen, A.K. (1981) Armalcolite-bearing Fe-Ti oxide assemblages in graphite equilibrated salic volcanic rocks with native iron from Disko, Central west Greenland. Contrib. Mineral. Petrol., 77, 307-24.CrossRefGoogle Scholar
Pichavant, M., Kontak, D.J., Valencia Herrera, J. and Clark, A.H. (1988a) The Miocene-Pliocene Macasuni volcanics, SE Peru. I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib. Mineral Petrol., 100, 300-24.CrossRefGoogle Scholar
Pichavant, M., Kontak, D.J., Briqueu, L., Valencia Herrera, J. and Clark, A.H. (1988b) The Miocene-Pliocene Macasuni volcanics, SE Peru. II. Geochemistry and origin of a felsic peraluminous magma. Contrib. Mineral. Petrol., 100, 325-38.CrossRefGoogle Scholar
Ramdohr, P. (1980) The ore minerals and their intergrowths. (2nd edition). International Series in Earth Sciences, Volume 35. Pergamon Press, Oxford Google Scholar
Ridd, M.F. (1983) Aspects of the Tertiary geology of the Faeroe-Shetland Channel. In Structure and development of the Greenland-Scotland Ridge (Bott, M.H.P., Saxov, S., Talwani, M. and Thiede, J., eds.). Plenum Press, New York, 91108.CrossRefGoogle Scholar
Shengelia, D.M., Akhvlediani, R.A. and Ketskhoveli, D.N. (1979) The graphite geothermometer. Dokl. Acad. Nauk SSSR, 235, 132-4.Google Scholar
Stach, E., Mackowsky, M.Th., Teichmiiller, M., Taylor, G.H., Chandra, D. and Teichmüiller, R. (eds.) (1982) Stach's Textbook of Coal Petrology. Gebrüder Borntraeger, Berlin.Google Scholar
Strens, R.G.L (1965) The graphite deposite of Seathwaite in Borrowdale, Cumberland. Geol. Mag., 102, 393-406.CrossRefGoogle Scholar
Vielzeuf, D. and Holloway, J.R. (1988) Experimental determination of fluid-absent melting relations in the pelitic system. Consequences for crustal differentiation. Contrib. Mineral Petrol., 98, 257-76.CrossRefGoogle Scholar
Wada, H., Tomita, T., Matsuura, K., luchi, K., Ito, M. and Morikiyo, T. (1994) Graphitization of carbonaceous matter during metamorphism with references to carbonate and pelitic rocks of contact and regional metamorphisms, Japan. Contrib. Mineral. Petrol., 118, 217-28.CrossRefGoogle Scholar
Weiss, P.L., Friedman, I. and Gleason, J.P. (1981) The origin of epigenetic graphite: evidence from isotopes. Geochim. Cosmochim. Acta, 45, 2325—32.CrossRefGoogle Scholar
Zeck, H.P. (1970) An erupted migmatite from Cerro del Hoyazo, SE Spain. Contrib. Mineral. Petrol., 26, 225-46.CrossRefGoogle Scholar
Zeck, H.P, (1992) Restite-melt and mafic-felsic magma mixing and mingling in an S-type dacite, Ceiro del Hoyazo, southeastern Spain. Trans. Roy. Soc. Edinburgh, 83, 139-44.Google Scholar