Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-23T23:49:38.708Z Has data issue: false hasContentIssue false

The granitic pegmatites of the Fregeneda area (Salamanca, Spain): characteristics and petrogenesis

Published online by Cambridge University Press:  05 July 2018

E. Roda Robles
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco 644, E-48080, Bilbao, Spain
A. Pesquera Perez
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco 644, E-48080, Bilbao, Spain
F. Velasco Roldan
Affiliation:
Departamento de Mineralogía y Petrología, Universidad del País Vasco 644, E-48080, Bilbao, Spain
F. Fontan
Affiliation:
Laboratoire de Minéralogie, Université Paul Sabatier, F-31000 Toulouse, France

Abstract

Pegmatites of the Fregeneda area, Salamanca, Spain, show a zonal distribution, from barren to enrichment in Li, Sn, Rb, Nb>Ta, B and P. They intrude pre-Ordovician metasediments which were metamorphosed to sillimanite-zone conditions near the Lumbrales granite. Field, mineralogical and petrographic data show the following zonal sequence from the granite outward: (1) barren pegmatites (pegmatites T1, T2, T3 and T4) with quartz, K-feldspar > albite, muscovite, tourmaline ± andalusite ± garnet; (2) intermediate pegmatites (types T5 and T6), characterized by the occurrence of beryl and Fe-Mn-Li phosphates; and (3) fertile pegmatites (dykes T7 and T8), with lepidolite, cassiterite, columbite, albite > K-feldspar, montebrasite and spodumene.

Tourmaline from different pegmatites shows significant compositional variations. Trace element variations in mica and K-feldspar suggest that the origin of the different pegmatitic bodies may be explained by three different paths of fractional crystallization of melts generated by partial melting of quartzo-feldspathic rocks.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahrens, L.H., Pinson, W.H. and Kearnsand, M.M. (1952) Association of rubidium and potassium and their abundances in igneous rocks and meteorites. Geochim. Cosmochim. Acta, 2, 229–42.CrossRefGoogle Scholar
Appleman, D.E. and Evans, H.T. Jr. (1973) U. S. Geol. Surv., Comp. Contrib. 20, U. S. Nat. Tech. Inf. Serv. Doc., PB2-16188.Google Scholar
Bathia, M.R. and Crooks, K.A.W. (1986) Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol., 92, 181–93.Google Scholar
Bea, F. (1976) Anomalía geoquímica de los granitoides calcoalcalinos hercínicos del área Cáceres-Salamanca-Zamora (España). Implicaciones petrogeneéticas. Stvd. Geol., 11, 2573.Google Scholar
Bea, F. and Ugidos, J.M. (1976) Anatexia inducida: petrogénesis de los granitos hespéricos de tendencia alcalina. Part I: leucogranitos del área O de Zamora y Salamanca. Stvd. Geol., 11, 924.Google Scholar
Bea, F., Sánchez, J.G. and Serrano Pinto, M. (1988) Una compilación geoquímica para los granitoides del macizo Hespérico. In Geología de los granitoides y rocas asociadas del macizo Hespérico. Rueda, Madrid, 87192.Google Scholar
Beus, A.A. (1960) Geochemistry of beryllium and the genetic types of beryllium deposits. Academy of Sciences of the USSR, Moscow, 329 pp. (in Russian).Google Scholar
Borg, I.Y. and Smith, D.K. (1969) Calculated powder patterns. Geol. Soc. Amer., Mem., 122.Google Scholar
Carnicero, M.A. (1981) Granitoides del Centro Oeste de la Provincia de Salamanca. Clasificación y correlación. Cuad. Lab. Xeol. Laxe, 2, 45–9.Google Scholar
Carnicero, M.A. (1982) Estudio del metamorfismo existente en torno al granito de Lumbrales (Salamanca). Stvd. Geol., 17, 720.Google Scholar
Černý, P. (1989) Characteristics of pegmatite deposits of tantalum. In Lanthanides, Tantalum and Niobium (Moller, P., Černý, P. and Saupé, F. eds). Springer Verlag, Berlin, Heidelberg, pp 195239.CrossRefGoogle Scholar
Černý, P. (1991) Rare-element granitic pegmatites. Part II: Regional to global environments and petrogenesis. Geos. Can., 18, 6881.Google Scholar
Černý, P. (1992) Geochemical and petrogenetic features of mineralization in rare-element granitic pegmatites in the light of current research. Appl. Geochem., 7, 393416.Google Scholar
Černý, P. and Hawthorne, F.C. (1982) Selected peraluminous minerals. In Granitic Pegmatites in Science and Industry (Černý, P., ed.). Mineral Assoc. Can., Short Course Handbook, 8, 163–86.Google Scholar
Černý, P. and Meintzer, R.E. (1988) Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: crustal environment, geochemistry and petrogenetic relationships. In Recent advances in the Geology of Granite-Related Mineral Deposits (Taylor, R.P. and Strong, D.F., eds). Canad. Inst. Min. Metall., Spec. Publ., 39, 170206.Google Scholar
Černý, P., Meintzer, R.E. and Anderson, A.J. (1985) Extreme fractionation in rare-element granitic pegmatites: selected examples of data and mechanisms. Canad. Mineral., 23, 381421.Google Scholar
Dupuy, C. and Allegre, C.J. (1972) Fractionement K/Rb dans les suites ignimbritiques de Toscane. Un example de rejuvénation crustal. Geochim. Cosmochim. Acta, 36, 437–58.CrossRefGoogle Scholar
Ercit, T.S. (1994) The geochemistry and crystal chemistry of columbite-group minerals from granitic pegmatites, southwestern Grenville Province, Canadian Shield. Canad. Mineral., 32, 421–38.Google Scholar
García de Figuerola, L.C. and Parga, J.R. (1971) Características fundamentales de los ‘sierros’ de la provincia de Salamanca. Bol. Geol. Min., 82-3-4, 287–90.Google Scholar
García Garzón, J. and Locutura, J. (1981) Datación por el método Rb-Sr de los granitos de Lumbrales-Sobradillo y Villar de Ciervo-Puerto Seguro. Bol. Geol. Min. 92-1, 6872.Google Scholar
Goldschmidt, J.R. and Laves, F. (1954) The microcline-sanidine stability relations. Geochim. Cosmochim. Acta, 5, 119.Google Scholar
Gonzalo Corral, J.C. (1981) Estudio geológico del campo filoniano de La Fregeneda (Salamanca). Lic. Thesis. Univ. Salamanca, 77 pp.Google Scholar
Gromet, L.P., Dymek, R.F., Haskin, L.A. and Korotev, R.L. (1984) The North American shale composite: its compilation, major and trace element characteristics. Geochim. Cosmochim. Acta, 48. 2469–82.CrossRefGoogle Scholar
Harris, N.E.W., Pearce, J.A. and Tindle, A.G. (1986) Geochemical characteristics of collision-zone magmatism. In Collision Tectonics (Coward, M.P. and Ries, A.C., eds). Blackwell Sci. Publ., Oxford., 6781.Google Scholar
Hedge, C.E. (1966) Variations in radiogenic Strontium found in volcanic rocks. J. Geophys. Res., 71, 6119–26.CrossRefGoogle Scholar
Heier, K.S. and Adams, J.A.S. (1964) The geochemistry of alkali metals. Phys. Chem. Earth, 5, 255380.CrossRefGoogle Scholar
Hovis, G.L. (1986) Behavior of alkali feldspars: crystallographic properties and characterization of composition and Al-Si distribution. Amer. Mineral., 71, 869–90.Google Scholar
Jahns, R.H. and Burham, C.W. (1969) Experimental studies of pegmatite petrogenesis: I. A model for the derivation and crystallization of granitic pegmatites. Econ. Geol., 64, 843–63.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1986) Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Amer. Mineral., 71, 472500.Google Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1987) Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 51, 519–43.CrossRefGoogle Scholar
Jolliff, B.L., Papike, J.J. and Shearer, C.K. (1992) Petrogenetic relationships between pegmatite and granite based on geochemistry of muscovite in pegmatite wall zones, Black Hills, South Dakota, USA. Geochim. Cosmochim. Acta, 56, 1915–39.CrossRefGoogle Scholar
Kontak, D.J. and Martin, R.F. (1997) Alkali feldspar in the peraluminous South Mountain Batholith, Nova Scotia: Trace-element data. Canad. Mineral., 35 , 959–77.Google Scholar
Kroll, H. and Ribbe, P.H. (1983) Lattice parameters, composition and Al, Si order in alkali feldspars. In Feldspar Mineralogy, 2nd edition. Min. Soc. Amer., Rev. Mineral., 2, 57–99.CrossRefGoogle Scholar
Kroll, H. and Ribbe, P.H. (1987) Determining (Al, Si) distribution and strain in alkali feldspars using lattice parameters and diffraction-peak positions: A review. Amer. Mineral., 71, 116.Google Scholar
London, D. (1992) The application of experimental petrology to the genesis and crystallization of granitic pegmatites. Canad. Mineral., 30, 499540.Google Scholar
López Plaza, M. and Carnicero, M.A. (1988) El plutonismo Hercínico de la penillanura salmantino-zamorana (centro-oeste de Espanña): Visión de conjunto en el contexto geológico regional. In Geología de los granitoides y rocas asociadas del macizo Hespérico. Rueda, Madrid, 5368.Google Scholar
López Plaza, M. and Martínez Catalán, J.R. (1988) Síntesis estructural de los granitoides Hercínicos del macizo Hespérico. In Geología de los granitoides y rocas asociadas del macizo Hespérico. Rueda, Madrid, 195210.Google Scholar
López Plaza, M., Carnicero, A. and Gonzalo, J.C. (1982) Estudio geológico del campo filoniano de La Fregeneda (Salamanca). Stvd. Geol., 17, 8998.Google Scholar
Lottermoser, B.G. and Lu, J. (1997) Petrogenesis of rare-element pegmatites in the Olary Block, South Australia, part 1. Mineralogy and chemical evolution. Mineral. Petrol., 59, 119.CrossRefGoogle Scholar
Martínez Fernandez, F.J. (1974) Estudio del área metamórfica y granítica de los Arribes del Duero (Prov. de Salamanca y Zamora). Ph.D. Thesis, Univ. Salamanca, 286 pp.Google Scholar
Mata Burillo, F. (1986) Geología del área granítico migmatítica de Lumbrales (Salamanca). Lic. Thesis. Univ. Salamanca, 72 pp.Google Scholar
Mulja, T., Williams-Jones, A.E., Martin, R.F. and Wood, S.A. (1995) Compositional variation and structural state of columbite-tantalite in rare-element granitic pegmatites of the Preissac-Lacorne batholith, Quebec, Canada. Amer. Mineral., 81, 146–57.CrossRefGoogle Scholar
Mulja, T., Williams-Jones, A.E., Wood, S.A. and Boily, M. (1996) The rare-element-enriched monzogranite-pegmatite-quartz vein systems in the Preissac-Lacorne batholith, Quebec. I. Geology and Mineralogy. Canad. Mineral., 33, 793815.Google Scholar
Neiva, A.M.R. (1995) Distribution of trace elements in feldspars of granitic aplites and pegmatites from Alijó-Sanfins, northern Portugal. Mineral. Mag., 59, 3545.CrossRefGoogle Scholar
Norton, J.J. (1981) Origin of lithium-rich pegmatitic magmas, southern Black Hills, South Dakota. Geol. Soc. Amer., Abstr. Programs, 34, 221.Google Scholar
Norton, J.J. and Redden, J.A. (1990) Relations of zoned pegmatites to other pegmatites, granite, and metamorphic rocks in the southern Black Hills, South Dakota. Amer. Mineral., 75, 631–55.Google Scholar
Pearce, J.A., Harris, N.E.W. and Tindle, A.G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956–83.CrossRefGoogle Scholar
Roda, E. (1993) Distribución, características y petrogénesis de las pegmatitas de La Fregeneda (Salamanca). Ph.D. Thesis, Basque Country Univ., 200 pp.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1993) Mica and K-feldspar as indicators of pegmatite evolution in the Fregeneda area (Salamanca, Spain). In Current Research in Geology Applied to Ore Deposits (Fenoll Hach-Alí, P., Torres-Ruiz, J. and Gervilla, F., eds), La Guioconda, Granada, 653–6.Google Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995 a) Micas of the muscovite-lepidolite series from the Fregeneda pegmatites (Salamanca, Spain). Mineral. Petrol. 55, 145–57.CrossRefGoogle Scholar
Roda, E., Pesquera, A. and Velasco, F. (1995 b) Tourmaline in granitic pegmatites and their country rocks, Fregeneda area, Salamanca, Spain. CanAD. Mineral. 33, 835–48.Google Scholar
Roda, E., Fontan, F., Pesquera, A. and Velasco, F. (1996) The phosphate mineral association of the granitic pegmatites of the Fregeneda area (Salamanca, Spain). Mineral. Mag., 60, 767–78.CrossRefGoogle Scholar
Shearer, C.K., Papike, J.J. and Laul, J.C. (1985) Chemistry of potassium feldspars from three zoned pegmatites, Black Hills, South Dakota: Implications concerning pegmatite evolution. Geochim. Cosmochim. Acta, 49, 663–73.CrossRefGoogle Scholar
Shearer, C.K., Papike, J.J. and Laul, J.C. (1987 a) Mineralogical and chemical evolution of a rare- element granite-pegmatite system: Harney Peak Granite, Black Hills, South Dakota. Geochim. Cosmochim. Acta, 51. 473–86.CrossRefGoogle Scholar
Shearer, C.K., Papike, J.J., Redden, J.A., Simons, S.B., Walker, R.J. and Laul, J.C. (1987 b) Origin of pegmatitic granite segregetions, Willow Creek, Black Hills, South Dakota. Canad. Mineral., 25, 159–71.Google Scholar
Shearer, C.K., Papike, J.J. and Jolliff, B.L. (1992) Petrogenetic links among granites and pegmatites in the Harney peak rare-element granite-pegmatite system, Black Hills, South Dakota. Canad. Mineral., 30, 785809.Google Scholar
Shmakin, B.M. (1979) Composition and structural state of K-feldspars from some U. S. pegmatites. Amer. Mineral., 64, 4956.Google Scholar
Shmakin, B.M. (1983) Geochemistry and origin of granitic pegmatites. Geochem. Int., 20, 18.Google Scholar
Sokolov, Yu.M. (1981) Precambrian metamorphogenic pegmatites. In The Development Potential of Precambrian Mineral Deposits. Nat. Resour. and Energy Div., U. N. Dept Tech. Co-op. for Development, Pergamon, 157–64.Google Scholar
Stewart, D.B. (1978) Petrogenesis of lithium-rich pegmatites. Amer. Mineral., 63, 970–80.Google Scholar
Suwimonprecha, P., Černý, P. and Friedrich, G. (1995) Rare metal mineralization related to granites and pegmatites, Phuket, Thailand. Econ. Geology, 90, 603–15.CrossRefGoogle Scholar
Ugidos, J.M. (1988) Asimilación en los granitos hercínicos: aspectos básicos e implicaciones. In Geología de los granitoides y rocas asociadas del macizo Hespérico Rueda, Madrid., 315–20.Google Scholar
Ugidos, J.M. and Bea, F. (1976) Análisis comparativo de los granitos del área Béjar-Plasencia con otros granitos ‘younger’ centro peninsulares: precisiones sobre la serie mixta. Stvd. Geol., 10, 4559.Google Scholar
Vielzeuf, D. and Holloway, J.R. (1988) Experimental determination of the fluid-absent melting relations in the pelitic system. Contrib. Mineral. Petrol., 98 , 257–76.CrossRefGoogle Scholar
Walker, R.J., Hanson, G.N. and Papike, J.J. (1989) Trace element constraints on pegmatite genesis: Tin Mountain pegmatite, Black Hills, South Dakota. Contrib. Mineral. Petrol., 101, 290300.CrossRefGoogle Scholar
Wang, R.Ch., Fontan, F., Xu, S.J., Chen, X.M. and Monchoux, P. (1997) The association of columbite, tantalite and tapiolite in the Suzhou granite, China. Canad. Mineral., 35, 699706.Google Scholar
Wright, T.L. and Stewart, D.B. (1968) X-ray and optical study of alkali feldspar: I Determination of composition and structural state from refined unit cell parameters and 2V. Amer. Mineral., 53, 3887.Google Scholar