Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T18:20:24.083Z Has data issue: false hasContentIssue false

Grandviewite redefinition, new formula Cu3Al2(SO4)(OH)10⋅H2O, and crystal-structure determination

Published online by Cambridge University Press:  29 June 2022

Jiří Sejkora*
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00 Prague 9, Czech Republic
Gwladys Steciuk
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
Maria Florencia Marquez-Zavalia
Affiliation:
Dpto. de Mineralogía, Petrografía y Geoquímica, IANIGLA-CONICET-CCT MENDOZA, Avda. A. Ruiz Leal s/n Parque General San Martín, C.C. 330 (5500) Mendoza, Argentina Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario, 5502, Mendoza, Argentina
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 2, CZ-182 21 Prague 8, Czech Republic
Zdeněk Dolníček
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, CZ-193 00 Prague 9, Czech Republic
*
*Author for correspondence: Jiří Sejkora, Email: [email protected]

Abstract

Grandviewite is redefined on the basis of a reinvestigation of the holotype specimen from the Grandview mine, Arizona, USA, and additional specimens found in the Restauradora vein at the Capillitas mine, northwestern Argentina. Grandviewite from the Capillitas mine forms globular masses up to a couple of millimetres in diameter, formed by very thin platy to acicular lath-like crystals, greenish-pale blue in colour, pleochroic (X = colourless, Y = very pale blue and Z = greenish-pale blue), with pale blue streak and silky to a satiny lustre. Results of an electron-microprobe study and crystal-structure determination lead to the new ideal formula Cu3Al2(SO4)(OH)10⋅H2O, which requires (in wt.%) CuO 45.13, Al2O3 19.28, SO3 15.14, and H2O 20.45, total 100.00. Its empirical formulas are (Cu2.96Mn0.01)Σ2.97Al2.03(SO4)0.97(SiO4)0.03(AsO4)0.01(OH)9.97Cl0.01⋅H2O (Grandview mine) and Cu2.97(Al2.03Fe0.01)Σ2.04(SO4)0.95(SiO4)0.03(AsO4)0.01(PO4)0.01(OH)9.97Cl0.01⋅H2O (Capillitas mine). Grandviewite is triclinic, P$\bar{1}$, with unit-cell parameters refined from powder X-ray diffraction data: a = 5.713(2), b = 10.1374(8), c = 10.9791(9) Å, α = 72.240(6)°, β = 82.79(2)°, γ = 86.07(2)°, V = 600.5(3) Å3 and Z = 2 (Grandview mine); and a = 5.749(3), b = 10.1388(13), c = 10.9656(16) Å, α = 72.344(1)°, β = 82.83(4)°, γ = 86.77(3)°, V = 604.2(3) Å3 and Z = 2 (Capillitas mine). The crystal structure of grandviewite from the Capillitas mine was solved by 3-dimensional electron diffraction analysis (R(obs)/wR(obs) = 0.1304/0.1316 for 6401/31007 observed reflections with I ≥ 3σ(I). Grandviewite contains infinite AlO6–Cu1–AlO6 slabs along a connected on both ends to Cu2 [4 + 1]–SO4 chains. The SO4 tetrahedra form a disordered chain along a connected to the Cu2 pyramids on one side and are otherwise stabilised by strong hydrogen bonds to surrounding units. The Raman and infrared spectra for samples from both occurrences are identical. The redefinition (new chemical formula and triclinic symmetry) has been approved by the Commission on New Minerals, Nomenclature and Classification of the International Mineralogical Association (number 21-K).

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Charles A Geiger

References

Bindi, L., Putz, H., Paar, W.H. and Stanley, C.J. (2017) Omariniite, Cu8Fe2ZnGe2S12, the germanium-analogue of stannoidite, a new mineral species from Capillitas, Argentina. Mineralogical Magazine, 81, 11511159.CrossRefGoogle Scholar
Blum, T.B., Housset, D., Clabbers, M.T.B., Van Genderen, E., Bacia-Verloop, M., Zander, U., McCarthy, A.A., Schoehn, G., Ling, W.L. and Abrahams, J.P. (2021) Statistically correcting dynamical electron scattering improves the refinement of protein nanocrystals, including charge refinement of coordinated metals. Acta Crystallographica, D77, 7585.Google ScholarPubMed
Burnham, C.W. (1962) Lattice constant refinement. Carnegie Institute Washington Yearbook, 61, 132135.Google Scholar
Čejka, J., Sejkora, J., Plášil, J., Bahfenne, S., Palmer, S.J. and Frost, R.L. (2011) A vibrational spectroscopic study of hydrated Fe3+ hydroxyl-sulfates; polymorphic minerals butlerite and parabutlerite. Spectrochimica Acta, A79, 13561363.CrossRefGoogle ScholarPubMed
Clabbers, M.T.B., Gruene, T., van Genderen, E. and Abrahams, J.P. (2019) Reducing dynamical electron scattering reveals hydrogen atoms. Acta Crystallographica, A75, 8293.Google ScholarPubMed
Colchester, D.M., Klish, D.R., Leverett, P. and Williams, P.A. (2008) Grandviewite, Cu3Al9(SO4)2(OH)29, a new mineral from the Grandview Mine, Arizona, USA. Australian Journal of Mineralogy, 14, 5154.Google Scholar
Effenberger, H., Lengauer, C.L., Libowitzky, E., Putz, H. and Topa, D. (2015) Lislkirchnerite, IMA 2015-064. CNMNC Newsletter No. 27, October 2015, page 1230. Mineralogical Magazine, 79, 12291236.Google Scholar
Frost, R.L., Sejkora, J., Čejka, J. and Keeffe, E.C (2009) Raman spectroscopic study of the mixed anion sulphate–arsenate mineral parnauite Cu9[(OH)10|SO4|(AsO4)2]⋅7H2O. Journal of Raman Spectroscopy, 40, 15461550.CrossRefGoogle Scholar
Gemmi, M. and Lanza, A.E. (2019) 3D electron diffraction techniques. Acta Crystallographica, B75, 495504.Google ScholarPubMed
Gemmi, M., Mugnaioli, E., Gorelik, T.E., Kolb, U., Palatinus, L., Boullay, P., Hovmöller, S. and Abrahams, J.P. (2019) 3D electron diffraction: The nanocrystallography revolution. ACS Central Science, 5, 13151329.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. and Hubert, D. (2007) Towards automated diffraction tomography: Part I-Data acquisition. Ultramicroscopy, 107, 507513.CrossRefGoogle ScholarPubMed
Kolb, U., Gorelik, T. and Otten, M.T. (2008) Towards automated diffraction tomography. Part II-Cell parameter determination. Ultramicroscopy, 108, 763772.CrossRefGoogle ScholarPubMed
Kraus, W. and Nolze, G. (1996) POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29, 301303.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone-Dale relationship: Part IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Márquez-Zavalía, M.F. (1999) El Yacimiento Capillitas, Catamarca. Pp. 16431652 in: Recursos Minerales de la República Argentina (Zappettini, E.O., editor). Volume 35. SEGEMAR, Buenos Aires, Argentina [in Spanish].Google Scholar
Márquez-Zavalía, M.F. (2006) El extremo rico en As de la serie Jordanita-Geocronita de Capillitas, Catamarca, Argentina. Revista de la Asociación Geológica Argentina, 61, 231235 [in Spanish].Google Scholar
Márquez-Zavalía, M.F. and Craig, J.R. (2004) Telluride and precious metal mineralization at Mina Capillitas, Northwestern Argentina. Neues Jahrbuch für Mineralogie – Monatshefte, 2004, 176192.CrossRefGoogle Scholar
Márquez-Zavalía, M.F. and Heinrich, C.A. (2016) Fluid evolution in a volcanic-hosted epithermal carbonate–base-metal–gold vein system: Alto de la Blenda, Farallón Negro, Argentina. Mineralium Deposita, 51, 873902.CrossRefGoogle Scholar
Márquez-Zavalía, M.F. and Pedregosa, J.C. (1994) Cianotriquita y carbonatocianotriquita de mina Capillitas, Catamarca. Revista de la Asociación Geológica Argentina, 49, 353358.Google Scholar
Márquez-Zavalía, M.F., Craig, J.R. and Solberg, T.N. (1999) Duranusite, product of realgar alteration, Mina Capillitas, Argentina. The Canadian Mineralogist, 37, 12551259.Google Scholar
Márquez-Zavalía, M.F., Galliski, M.A., Drábek, M., Vymazalová, A., Watanabe, Y., Murakami, H. and Bernhardt, H.-J. (2014) Ishiharaite, (Cu,Ga,Fe,In,Zn)S, a new mineral from Capillitas mine, northwestern Argentina. The Canadian Mineralogist, 52, 969980.CrossRefGoogle Scholar
Márquez-Zavalía, M.F., Vymazalová, A., Galliski, M.A., Watanabe, Y. and Murakami, H. (2020) Indium-bearing paragenesis from the Nueva Esperanza and Restauradora veins, Capillitas mine, Argentina. Journal of Geosciences, 65, 95109.Google Scholar
Mills, S.J., Christy, A.G., Colombo, F. and Price, J.R. (2015) The crystal structure of cyanotrichite. Mineralogical Magazine, 79, 321335.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S.J. (2022) Newsletter 65. Mineralogical Magazine, 86, 354358, https://doi.org/10.1180/mgm.2022.14.CrossRefGoogle Scholar
Mugnaioli, E., Gorelik, T. and Kolb, U. (2009) “Ab initio” structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. Ultramicroscopy, 109, 758765.CrossRefGoogle ScholarPubMed
Mugnaioli, E., Lanza, A.E., Bortolozzi, G., Righi, L., Merlini, M., Cappello, V., Marini, L., Athanassiou, A. and Gemmi, M. (2020) Electron diffraction on flash-frozen cowlesite reveals the structure of the first two-dimensional natural zeolite. ACS Central Science, 6, 15781586.CrossRefGoogle ScholarPubMed
Myneni, S.C. (2000) X-ray and vibrational spectroscopy of sulfate in earth materials. Pp. 113172 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L., and Nordstrom, D.K., editors). Reviews in Mineralogy and Geochemistry, 40. Mineralogical Society of America and the Geochemical Society, Washington DC.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part A, Theory and Applications In Inorganic Chemistry. 6th ed. John Wiley & Sons, Inc., Hoboken, New Jersey, USA, 419 pp.Google Scholar
Ondruš, P. (1993) A computer program for analysis of X-ray powder diffraction patterns. Materials Science Forum, EPDIC-2, Enchede, 133–136, 297300.CrossRefGoogle Scholar
Paar, W.H., Roberts, A.C., Berlepsch, P., Armbruster, T., Topa, D. and Zagler, G. (2004) Putzite, (Cu4.7Ag3.3)8GeS6, a new mineral species from Capillitas, Catamarca, Argentina: description and crystal structure. The Canadian Mineralogist, 42, 17571769.CrossRefGoogle Scholar
Palatinus, L. (2013) The charge-flipping algorithm in crystallography. Acta Crystallographica, B69, 116.Google ScholarPubMed
Palatinus, L. and Chapuis, G. (2007) SUPERFLIP – A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. Journal of Applied Crystallography, 40, 786790.CrossRefGoogle Scholar
Palatinus, L., Corrêa, C.A., Steciuk, G., Jacob, D., Roussel, P., Boullay, P., Klementová, M., Gemmi, M., Kopeček, J., Domeneghetti, M.C., Cámara, F. and Petříček, V. (2015a) Structure refinement using precession electron diffraction tomography and dynamical diffraction: tests on experimental data. Acta Crystallographica, B71, 740751.Google Scholar
Palatinus, L., Petříček, V. and Correâ, C.A. (2015b) Structure refinement using precession electron diffraction tomography and dynamical diffraction: Theory and implementation. Acta Crystallographica, A71, 235244.Google Scholar
Palatinus, L., Brázda, P., Boullay, P., Perez, O., Klementová, M., Petit, S., Eigner, V., Zaarour, M. and Mintova, S. (2017) Hydrogen positions in single nanocrystals revealed by electron diffraction. Science, 355, 166169.CrossRefGoogle ScholarPubMed
Palatinus, L., Brázda, P., Jelínek, M., Hrdá, J., Steciuk, G. and Klementová, M. (2019) Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallographica, B75, 512522.Google ScholarPubMed
Petříček, V., Dušek, M., and Palatinus, L. (2020) Crystallographic computing system Jana2020. Institute of Physics of the ASCR, Prague, Czech Republic.Google Scholar
Plana-Ruiz, S., Portillo, J., Estradé, S., Peiró, F., Nicolopoulos, S. and Kolb, U. (2018) Quasi-parallel precession diffraction: Alignment method for scanning transmission electron microscopes. Ultramicroscopy, 193, 3951.CrossRefGoogle ScholarPubMed
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (φρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J. T., editor). San Francisco Press, San Francisco, USA.Google Scholar
Putz, H., Paar, W.H., Topa, D., Makovicky, E. and Roberts, A.C. (2006) Catamarcaite, Cu6GeWS8, a new species of germanium–tungsten sulfide from Capillitas, Catamarca, Argentina: description, paragenesis and crystal structure. The Canadian Mineralogist, 44, 14811497.CrossRefGoogle Scholar
Putz, H., Paar, W.H. and Topa, D. (2009) A contribution to the knowledge of the mineralization at mina Capillitas, Catamarca. Revista de la Asociación Geológica Argentina, 64, 514524.Google Scholar
Steciuk, G., Majzlan, J. and Plášil, J. (2021a) Hydrogen disorder in kaatialaite Fe(AsO2(OH)2)⋅5H2O from Jáchymov, Czech Republic: determination from low temperature 3D electron diffraction. International Union of Crystallography Journal, 8, 20522525.CrossRefGoogle Scholar
Steciuk, G., Sejkora, J., Čejka, J., Plášil, J. and Hloušek, J. (2021b) Krupičkaite, Cu6[AsO3(OH)]6⋅8H2O, a new copper arsenate mineral from Jáchymov (Czech Republic). Journal of Geosciences, 66, 3750.CrossRefGoogle Scholar
Vincent, R. and Midgley, P.A. (1994) Double conical beam-rocking system for measurement of integrated electron diffraction intensities. Ultramicroscopy, 53, 271282.CrossRefGoogle Scholar
Viramonte, J.G., Galliski, M.A., Araña Saavedra, V., Aparicio, A., García Cacho, L. and Martín Escorza, C. (1984) El finivulcanismo básico de la depresión de Arizaro, provincia de Salta. IX Congreso Geológico Argentino, Actas, III, 234251 [in Spanish].Google Scholar
Supplementary material: File

Sejkora et al. supplementary material

Sejkora et al. supplementary material 1

Download Sejkora et al. supplementary material(File)
File 1.7 MB