Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-05T01:44:24.578Z Has data issue: false hasContentIssue false

Goldhillite, Cu5Zn(AsO4)2(OH)6⋅H2O, a new mineral species, and redefinition of philipsburgite, Cu5Zn[(AsO4)(PO4)](OH)6⋅H2O, as an As–P ordered species

Published online by Cambridge University Press:  13 May 2022

Rezeda M. Ismagilova*
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Branko Rieck
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090, Austria
Anthony R. Kampf
Affiliation:
Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, United States of America
Gerald Giester
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090, Austria
Elena S. Zhitova
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia Institute of Volcanology and Seismology, Russian Academy of Sciences, Boulevard Piip 9, Petropavlovsk-Kamchatsky 683006, Russia
Christian L. Lengauer
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Althanstraße 14, 1090, Austria
Sergey V. Krivovichev
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia Nanomaterials Research Centre, Kola Science Centre, Russian Academy of Sciences, Fersman Street 14, Apatity 184209, Russia
Andrey A. Zolotarev
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Justyna Ciesielczuk
Affiliation:
Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41–200 Sosnowiec, Poland
Julia A. Mikhailova
Affiliation:
Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersman Street 14, Apatity 184209, Russia
Dmitry I. Belakovsky
Affiliation:
Fersman Mineralogical Museum, Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow 119071, Russia
Vladimir N. Bocharov
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Vladimir V. Shilovskikh
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Natalia S. Vlasenko
Affiliation:
St. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg 199034, Russia
Barbara P. Nash
Affiliation:
Department of Geology and Geophysics, University of Utah, Salt Lake City, UT 84112, United States of America
Paul M. Adams
Affiliation:
Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007, United States of America
*
*Author for correspondence: Rezeda M. Ismagilova, Email: [email protected]

Abstract

Philipsburgite has been redefined as the intermediate member of the goldhillite–philipsburgite–kipushite isomorphous series with the ideal formula Cu5Zn[(AsO4)(PO4)](OH)6⋅H2O due to the site-selective As–P substitution. The new mineral goldhillite, ideally Cu5Zn(AsO4)2(OH)6⋅H2O [or Cu5Zn(AsO4)(AsO4)(OH)6⋅H2O], is the arsenate end-member of this series. Goldhillite occurs on fracture surfaces in a rock comprised mostly of quartz with iron hydroxides in association with mixite, cornwallite and conichalcite. Goldhillite forms transparent, bright emerald-green, tabular crystals with vitreous lustre, flattened on {100}, up to 1 mm across and in rosettes up to 1.5 mm. The mineral is brittle with uneven fracture and perfect cleavage on {100}; the Mohs hardness is 3.5. The calculated density for the holotype is 4.199 g cm–3. The Raman spectrum is consistent with the presence of H2O-molecules, OH-groups, AsO4 tetrahedra and traces of PO4. Electron microprobe analyses of goldhillite (H2O content based on the crystal structure) provided: CuO 48.91, ZnO 13.18, As2O5 26.06, P2O5 3.25, H2O 8.97, total 100.37 wt.%. The empirical formula for goldhillite based on O = 15 apfu is (Cu4.69Zn1.23)Σ5.92(As0.86P0.18O4)2(OH)5.61⋅H2O. The crystal structures of goldhillite and philipsburgite were determined using single-crystal X-ray diffraction data and refined to R1 = 0.054 (for 2365 I > 2σI reflections) and 0.052 (for 2308 I > 2σI reflections), respectively. Goldhillite is monoclinic, P21/c, a = 12.3573(5), b = 9.2325(3), c = 10.7163(4) Å, β = 97.346(4)°, V = 1212.59(8) Å3 and Z = 4. Philipsburgite is monoclinic, P21/c, a = 12.3095(9), b = 9.2276(3), c = 10.7195(3) Å, β = 97.137(7)°, V = 1208.16(10) Å3 and Z = 4. The strongest lines of the powder X-ray diffraction pattern of goldhillite [d, Å (I, %)(hkl)] are: 4.09 (28)(300), 3.41 (23)(12$\bar{2}$, 221, 311), 2.57 (100)(132, 11$\bar{4}$, 20$\bar{4}$), 2.17 (18)(42$\bar{3}$, 332), 1.95 (22)(432) and 1.54 (20)(13$\bar{6}$, 060). Goldhillite is named after its type locality, the Gold Hill mine, Tooele County, Utah, USA.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Agilent Technologies (2014) CrysAlisPro Software system, version 1.171.37.35. Agilent Technologies UK Ltd, Oxford, UK.Google Scholar
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 146, 104107.Google Scholar
Bruker-AXS (2009) TOPAS V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany.Google Scholar
Ciesielczuk, J., Janeczek, J., Dulski, M. and Krzykawski, T. (2016) Pseudomalachite–cornwallite and kipushite–philipsburgite solid solutions: chemical composition and Raman spectroscopy. European Journal of Mineralogy, 28, 555569.CrossRefGoogle Scholar
Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K. and Puschmann, H. (2009) OLEX2: a complete structure solution, refinement and analysis program. Journal of Applied Crystallography, 42, 339341.CrossRefGoogle Scholar
Donovan, J., Kremser, D. and Fournelle, J. (2012) Probe for EPMA: acquisition, automation and analysis. Probe Software, Inc., Eugene, Oegon, USA.Google Scholar
Horiba Jobin Vyon (2008) LabSpec software 5.54.15. Horiba, Jobin Vyon, Japan.Google Scholar
Ismagilova, R.M., Kampf, A.R., Zhitova, E.S., Zolotarev, A.A., Ciesielczuk, J., Mikhailova, J.A., Belakovsky, D.I., Bocharov, V.N., Shilovskikh, V.V., Vlasenko, N.S., Nash, B.P. and Krivovichev, S.V. (2021) Goldhillite, IMA 2021-034. CNMNC Newsletter 62. Mineralogical Magazine, 85, 634638, https://doi.org/10.1180/mgm.2021.62Google Scholar
Krivovichev, S.V., Zhitova, E.S., Ismagilova, R.M. and Zolotarev, A.A. (2018) Site-selective As–P substitution and hydrogen bonding in the crystal structure of philipsburgite, Cu5Zn((As,P)O4)2(OH)6⋅H2O. Physics and Chemistry of Minerals, 45, 917923.CrossRefGoogle Scholar
Miyawaki, R., Hatert, F., Pasero, M. and Mills, S. (2021). Newsletter 60. Mineralogical Magazine, 85, 454458, doi:10.1180/mgm.2021.30CrossRefGoogle Scholar
Olmi, F., Sabelli, C. and Brizzi, G. (1988) Agardite-(Y), Gysinite-(Nd) and other rare minerals from Sardinia. The Mineralogical Record, 19, 305310.Google Scholar
OriginLab Corporation (2009) OriginLab 8.1. Northampton, Massachusetts, USA.Google Scholar
Peacor, D., Dunn, P.J., Ramik, R., Sturman, B. and Zeihen, L. (1985) Philipsburgite, a new copper zinc arsenate hydrate related to kipushite, from Montana. The Canadian Mineralogist, 23, 255258.Google Scholar
Piret, P., Deliens, M. and Piret-Meunier, J. (1985) Occurrence and crystal structure of kipushite, a new copper-zinc phosphate from Kipushi, Zaire. The Canadian Mineralogist, 23, 3542.Google Scholar
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 3176 in: Electron Probe Quantitation (Heinrich, K. and Newbury, D., editors). Plenum Press, New York, https://doi.org/10.1007/978-1-4899-2617-3_4.CrossRefGoogle Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, A71, 38.Google Scholar
Shirose, Y. and Uehara, S. (2011). Philipsburgite from the Yamato mine, Yamaguchi Prefecture, Japan. Journal of Mineralogical and Petrological Sciences, 106, 153157. http://doi.org/10.2465/jmps.101021eCrossRefGoogle Scholar
Siidra, O.I., Nazarchuk, E.V., Pautov, L.A., Borisov, A.S. and Kozin, M.S. (2021) Milkovoite, IMA 2021-005. CNMNC Newsletter 61; Mineralogical Magazine, 85, https://doi.org/10.1180/mgm.2021.48Google Scholar
Yakovenchuk, V.N., Pakhomovsky, Y.A., Konoplyova, N.G., Panikorovskii, T.L., Mikhailova, Y.A, Bocharov, V.N, Krivovichev, S.V and Ivanyuk, G.Y. (2017) Epifanovite NaCaCu5(PO4)4[AsO2(OH)2]⋅7H2O, a new mineral from the Kester deposit (Sakha-Yakutia, Russia). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 146, 3039 [in Russian].Google Scholar
Supplementary material: File

Ismagilova et al. supplementary material

Ismagilova et al. supplementary material

Download Ismagilova et al. supplementary material(File)
File 3.8 MB