Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-24T02:36:32.909Z Has data issue: false hasContentIssue false

Geochemistry of plutonic spinels from the North Kamchatka Arc: comparisons with spinels from other tectonic settings

Published online by Cambridge University Press:  05 July 2018

Pavel K. Kepezhinskas
Affiliation:
Institute of Lithosphere, Russian Academy of Sciences, Staromonetny per., 22, Moscow 109180, Russia
Rex N. Taylor
Affiliation:
Department of Geology, University of Southampton, Southampton, U.K.
Hisao Tanaka
Affiliation:
Department of Earth Sciences, Yamagata University, Yamagata, Japan

Abstract

Ultramafic to marie plutons in the Olyutor Range, North Kamchatka, represent the magmatic roots of a late Eocene arc, related to the westward subduction of the Komandorsky Basin beneath the Asian continental margin. Olyutor Range plutons are concentrically zoned with cumulate dunite cores mantled by a wehrlite-pyroxenite transitional zone and, in turn, by a narrow gabbroic rim.

Spinel is a common accessory mineral in these arc plutonics, and we present analyses of spinels from a range of lithologies. A continuous compositional trend is observed from Cr-spinel in the ultramafics to Cr-rich magnetite in marginal gabbros. Complex chemical zoning patterns within individual spinel grains suggest an interplay between fO2, fractionation, volatile content and subsequent sub-solidus reequilibration of spinel with co-existing silicates (mainly olivine).

In general, the spinels from magmatic arc environments are characterised by high total Fe and high Fe3+ contents compared to MORB and boninitic spinels and higher Cr-values relative to oceanic basin spinels. These differences imply a high oxygen fugacity during arc petrogenesis. Differences are also observed between plutonic spinels from arcs and low-Ti supra-subduction zone ophiolites. Low-Ti ophiolitic spinels are generally poorer in iron and richer in Cr, and hence are similar in composition and perhaps tectonic setting to fore-arc boninitic spinels.

Type
Geochemistry and Petrology
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Now at: Department of Geology, University of South Florida, Tampa, Florida 33620, U.S.A.

References

Agata, T. (1988) Chrome spinels from the Oura layered igneous complex, central Japan. Lithos, 21, 97108.Google Scholar
Albee, A. L. and Ray, L. (1970) Correction factors for electron probe analysis of silicates, oxides, carbonates, phosphates, and sulphates. Anal. Chem., 42, 1409–14.Google Scholar
Aprelkov, S. E., Olgushskaya, O. N., and Ivanova, G. I. (1991) Tectonics of Kamchatka. Geology of the Pacific Ocean, 3, 6275.(in Russian).Google Scholar
Arai, S. (1992) Chemistry of chromium spinel in volcanic rocks as a potential guide to magma chemistry. Mineral. Mag., 56, 173–84.Google Scholar
Barnes, C. G. (1983) Petrology and upward zonation of the Wooley Creek Batholith, Klamath Mountains, California. J. Petrol., 24, 495537.Google Scholar
Barsdell, M. and Berry, R. F. (1990) Origin and evolution of primitive island arc ankaramites from Western Epi, Vanuatu. Ibid., 31, p. 747-77.Google Scholar
Beccaluava, L. and Serri, G. (1988) Boninitic and low-Ti subduction-related lavas from intraoceanic arc-backarc systems and low-Ti ophiolites: a re-appraisal of their petrogenesis and original tectonic setting. Tectonophysics, 146, 291315.Google Scholar
Bence, A. E. and Albee, A. L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol., 76, 382403.Google Scholar
Bird, M. L., and Clark, A. L. (1976) Microprobe study of olivine chromitites of the Goodnews Bay ultra-mafic complex, Alaska, and the occurrence of platinum. J. Res. U.S. Geol. Surv., 4, 717–25.Google Scholar
Bloomer, S. H. and Hawkins, J. W. (1983) Gabbroic and ultramafic rocks from the Mariana Trench: an island arc ophiolite. In The tectonic and geologic evolution of Southeast Asian Seas and lslands, Part 2 (Hayes, D. E., ed.) Geophys. Monogr., AGU, 27, p. 294-317.Google Scholar
Bloomer, S. H. and Hawkins, J. W. (1987) Petrology and geochemistry of boninite series volcanic rocks from the Mariana Trench. Contrib. Mineral. Petrol., 97, 469–95.Google Scholar
Bogdanov, N. A. and Fedorchuk, A. V. (1987) Geochemistry of Cretaceous oceanic basalts of the Olutorski Range (Bering Sea). Ofioliti, 12, 113-24.Google Scholar
Bogdanov, N. A. Vishnevskaya, V. S., Kepezhinskas, P. K., Sukhov, A. N., and Fedorchuk, A. V. (1987) Geology of the South Koryak Highland. Nauka Publishers, Moscow, 168 pp. (in Russian).Google Scholar
Brown, G. C. (1982) Calc-alkaline intrusive rocks: their diversity, evolution, and relation to volcanic arcs. In: Thorpe, R. S. (ed.) Orogenic andesites and related rocks. London, Wiley, 437-61.Google Scholar
Cameron, W. E. (1985) Petrology and origin of primitive lavas from the Troodos ophiolite, Cyprus. Contrib. Mineral. Petrol., 89, 239–55.Google Scholar
Campbell, I. H. (1985) The difference between oceanic and continental tholeiites: a fluid dynamic explanation. Ibid., 91, 37-43.Google Scholar
Chekhovich, V. D., Bogdanov, N. A., Kravchenko-Berzhnoy, I. R., Gladenkov, A. Yu., and Averina, G. Yu. (1990) Geology of the Western Bering Sea region. Nauka Publishers, Moscow, 159 pp. (in Russian).Google Scholar
Crawford, A. J., Falloon, T. J., and Green, D. H. (1989) Classification, petrogenesis and tectonic setting of boninites. In Boninites, (Crawford, A. J., ed.) London, Unwin Hyman, 249.Google Scholar
DeBari, S. and Coleman, R. G. (1989) Examination of the deep levels of an island arc: evidence from the Tonsina ultramafic-mafic assemblage, Tonsina, Alaska. J. Geophys. Res., 94, 4373–91.Google Scholar
Dick, H. J. B. and Bullen, T. (1984) Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86, 5476.Google Scholar
Fedorchuk, A. V. and Izvekov, I. N. (in press) New data on the structure of the northern part of the Sredinny Range, Kamchatka. Transactions of the Russian Academy of Science, Geological Series (in Russian).Google Scholar
Firsov, L. V. (1987) Geochronology of magmatic rocks from the southwestern part of the Koryak upland (Olyutor Depression). In Regional geochronology of Siberia and Soviet Far East (Nikolaeva, I. V., ed.) Nauka Publishers, Novosibirsk, 732 (in Russian).Google Scholar
Fisk, M. and Bence, A. E. (1980) Experimental crystallisation of chrome spinel in FAMOUS basalt 527-1-1. Earth. Planet. Sci. Lett., 48, 111123.Google Scholar
Flower, M. F. J. and Levine, H. M. (1987) Petrogenesis of a tholeiite-boninite sequence from Ayios Mamas, Troodos ophiolite: evidence for splitting of a volcanic arc? Contrib. Mineral. Petrol., 97, 509–24.Google Scholar
Galan, G., and Suarez, O. (1989) Corthlanditic enclaves associated with calc-alkaline granites from Tapia-Asturias (Hercynian Belt, northwestern Spain). Lithos, 23, 233–45.Google Scholar
Gerlach, D. C., Ave Lallemant, H. G., and Leeman, W. P. (1981) An island arc origin for the Canyon Mountain ophiolite complex, Eastern Oregon, USA. Earth Planet. Sci. Lett., 53, 255–65.Google Scholar
Gill, J. B. (1981) Orogenic andesites and plate tectonics. Springer-Verlag, 390 pp.Google Scholar
Hatton, C. J., and Von Gruenwaldt, G. (1985) Chro-mite from the Swartkop chromite mine—an estimate of the effects of subsolidus re-equilibration. Econ. Geol., 80, 911–24.Google Scholar
Hawkins, J. W., Bloomer, S. H., Evans, C. A. and Melchior, J. T. (1984) Evolution of intra-oceanic arc-trench systems. Tectonophysics, 102, 175205.Google Scholar
Hebert, R. (1982) Petrography and mineralogy of the oceanic peridotites and gabbros; some comparisons with ophiolite examples. Ofioliti, 7, 299324.Google Scholar
Hebert, R. and Laurent, R. (1990) Mineral chemistry of the plutonic section of the Troodos ophiolite: new constraints for geneis of arc-related ophiolites. In Ophiolites: oceanic crustal analogues (Malpas, J., Moores, E. M., Panayiotou, A., and Xenophontos, C., eds.) Geol. Surv. Cyprus, Nicosia, Cyprus, 149-63.Google Scholar
Henderson, P. and Wood, R. J. (1981) Reaction relationships of chrome-spinels in the igneous rocks further evidence from the layered intrusions of Rhum and Mull, Inner Hebrides, Scotland. Contrib. Mineral. Petrol., 78, 225–9.Google Scholar
Hill, R. and Roeder, P. (1974) The crystallisation of spinel from basaltic liquid as a function of oxygen fugacity. J. Geol., 82, 709–29.Google Scholar
Irvine, T. N. (1967) Chromian spinel as a petrogenetic indicator. Part 2. Petrologic applications. Can. J. Earth Sci., 4, 71103.Google Scholar
Irvine, T. N. (1974) Petrology of the Duke Island ultramafic complex, southeastern Alaska. Geol. Soc. Amer. Mem., 138, 240. pp.Google Scholar
Jan, M. Q. and Windley, B. F. (1990) Chromian spinel-silicate chemistry in ultramafic rocks of the Jijal complex, Northwest Pakistan. J. Petrol., 31, 667715.Google Scholar
Jaques, A. L., and Green, D. H. (1980) Anhydrous melting of peridotite at 0-15 kb pressure and the genesis of tholeiitic basalts. Contrib. Mineral. Petrol., 73, 287310.Google Scholar
Kepezhinskas, P. K. and Savichev, A. T. (1991) Chemical stratigraphy and evolution of the arc-related magma chambers. Geology of the Pacific Ocean, 1, 12-26 (in Russian).Google Scholar
Kepezhinskas, P. K. Reuber, I., Tanaka, H., and Miyashita, S. (in press). Zoned calc-alkaline plutons from the North Kamchatka arc, Russia: implications for the crustal growth in magmatic arcs. Mineralogy and Petrology. Google Scholar
Leitch, E. C. (1984) Island arc elements and arc-related ophiolites. Tectonophysics, 106, 177203.Google Scholar
Luhr, J. F. and Carmichael, I. S. E. (1985) Jorullo Volcano, Michoacan, Mexico (1759-1774): the earliest stages of fractionation in calc-alkaline magmas. Contrib. Mineral. Petrol., 90, 142161.Google Scholar
Menzies, M., Blanchard, D., and Xenophontos, C. (1980) Genesis of the Smartville arc-ophiolite, Sierra Nevada Foothills, California. Amer. J. Sci., 280A, 329-44.Google Scholar
Nicolas, A., Reuber, I., and Benn, K. (1988) A new magma chamber model based on structural studies in the Oman ophiolite. Tectonophysics, 151, 87105.Google Scholar
Nye, C. J. and Reid, M. K. (1986) Geochemistry of primary and least fracionated lavas from Okmok volcano, Central Aleutians: implications for arc magmagenesis. J. Geophys. Res., 91, 102718.Google Scholar
Pearce, J. A., Lippard, S. J. and Roberts, S. (1984) Characteristics and tectonic significance of supra-subduction zone ophiolities. In Marginal Basin Geology (Kokelaar, B. P. and Howells, M. F., eds.) Geol. Soc. London Spec. Publ., 16, 77-94.Google Scholar
Pearce, J. A., Van der Laan, S. R., Arculus, R. J., Murton, B. J., Ishii, T., Peate, D. W., and Parkinson, I. (1992) Boninite and harzburgite from ODP Leg 125 (Bonin-Mariana fore-arc): a case study of magma genesis during the initial stages of subduction. Proc. of the ODP, Sci. Repts, 125, 623–59.Google Scholar
Phelps, D., and Ave Lallemant, H. G. (1980) The Sparta ophiolite complex, Northeastern Oregon: a plutonic equivalent to low K2O island arc volcanism. Amer. J. Sci., 280A, 345-58.Google Scholar
Ramsey, W. R. H., Crawford, A. J. and Foden, J. D. (1984) Field setting, mineralogy, chemistry and genesis of arc picrites, New Georgia, Solomon Islands. Contrib. Mineral. Petrol., 88, 386402.Google Scholar
Reuber, I., Kepezhinskas, P. K., Bogdanov, N. A., Miyashita, S., Tanaka, H., Sobolev, S. F., Krasotov, M. Yu., and Ledneva, G. B. (1991) Geometric et structure des plutons intrusifs dans l'arc premature de Machevna (NE-Kamchatka, USSR). C. R. Acad. Sci. Paris, 312, 312, 289-94.Google Scholar
Roberts, S. (1986) The role of igneous processes in the formation of ophiolitic chromite. Unpublished Open University Thesis, 262 pp.Google Scholar
Roeder, P. L. and Reynolds, I. (1991) Crystallisation of chromite and chromium solubility in basaltic melts. J. Petrol., 32, 909–34.Google Scholar
Roeder, P. L. Campbell, I. H., and Jamieson, H. E. (1979) A reevaluation of the olivine-spinel geothermometer. Contrib. Mineral. Petrol., 68, 325–34.Google Scholar
Schreiber, H. D. and Haskin, L. A. (1976) Chromium in basalts: experimental determination of redox states and partitioning among synthetic silicate phases. Proc. 7th Lunar Sci. Conf., 1221-59.Google Scholar
Sigurdsson, H., and Schilling, J. G. (1976) Spinels in Mid-Atlantic Ridge basalts: chemistry and occurrence. Earth Planet. Sci. Lett., 29, 720.Google Scholar
Snoke, A. W., Quick, J. E. and Bowman, H. R. (1981) Bear Mountain ingenous complex, Klamath Mountains, California: an ultrabasic to silicic calc-alkaline suite. J. Petrol., 22, 501–52.Google Scholar
Stern, R. J., and Bloomer, S. H. (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol. Soc. Amer. Bull., 104, 1621–36.Google Scholar
Stern, R. J., and Bloomer, S. H. Lin, P. N., and Smoot, N. C. (1989) Submarine arc volcanism in the southern Mariana arc as an ophiolite analogue. Tectonophysics, 168, 151–70.Google Scholar
Tanaka, H., Miyashita, S., Kepezhinaskas, P. K. and Reuber, I. (1992) Plutonic rocks in the Olyutor Range, Northeastern Kamchatka, USSR. J. Japan. Assoc. Mineral Petrol. Econ. Geol., 87, 111.(in Japanese with English abstract).Google Scholar
Taylor, B., and Fujioka, K., et al. (1990) Proceedings of the ODP, Initial Reports, 126, College Station, TX (Oceanic Drilling Program).Google Scholar
Taylor, H. P., Jr. (1967) The zoned ultramafic com-plexes of southeastern Alaska. In: Wyllie, P. J. (ed.) Ultramafic and related rocks. New York, John Wiley, p. 97121.Google Scholar
Taylor, R. N., Lapierre, H., Vidal, Ph., Nesbitt, R. W., and Croudace, I. W. (1992a) Igneous geochemistry and petrogenesis of the Izu-Bonin forearc basin. In Proceedings of the ODP, Scientific Results (Taylor, B. and Fujioka, K., eds.) 126, 405-30.Google Scholar
Taylor, R. N., Murton, B. J. and Nesbitt, R. W. (1992b) Chemical transects across intra-oceanic arcs: impli-cations for the tectonic setting of ophiolites. In Ophiolites and their Modern Oceanic Analogues (Parson, L. M., Murton, B. J., and Browning, P., eds.) Geol. Soc. London Spec. Publ. 60, 117-32.Google Scholar
Thy, P. (1987) Petrogenetic implications of mineral crystallisation trends of Troodos cumulates, Cyprus. Geol. Mag., 124, 111.Google Scholar
Thy, P. Schiffman, P., and Moores, E. M. (1989) Igneous mineral stratigraphy and chemistry of the Cyprus Crustal Study Project drill core in the plutonic sequences of the Troodos ophiolite. In Cyprus Crustal Study Project, Initial Report Hole CY-4 (Gibson, I. L., Malpas, J., and Xenophontos, C., eds.) Geol. Surv. Canada Paper 88-9, 147-86.Google Scholar
Van der Laan, S. R., Flower, M. F. J., and Koster van Groos, A. F. (1989) Experimental evidence for the origin of boninites: near-liquidus phase relations to 7.5 kbar. In Boninites (Crawford, A. J., ed.) London, Unwin Hyman, p. 112-47.Google Scholar
Yamamoto, M. (1983) Spinels in basaltic lavas and ultramafic inclusions of Oshima-Oshima volcano, North Japan. J. Fac. Sci. Hokkaido Univ., Ser. IV, 20, 135-43.Google Scholar
Wood, B. J. (1991) Oxygen barometry of spinel peridotites. In Oxide minerals: petrologic and magnetic significance (Lindsley, D. H., ed.). Reviews in Mineralogy, Mineralogical Society of America, 25, 417-31.Google Scholar