Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T06:51:46.610Z Has data issue: false hasContentIssue false

The geochemistry of hydrothermal and pelagic sediments from the Galapagos Hydrothermal Mounds Field, D.S.D.P. Leg 70

Published online by Cambridge University Press:  05 July 2018

S. A. Moorby
Affiliation:
Applied Geochemistry Research Group, Geology Department, Imperial College, London SW7
D.S. Cronan
Affiliation:
Applied Geochemistry Research Group, Geology Department, Imperial College, London SW7

Abstract

Over 200 sediment samples taken from ten holes drilled in the Galapagos Hydrothermal Mounds Field during D.S.D.P. Leg 70 have been analysed for twenty-one elements. The three main sediment lithologies recognized are siliceous carbonate ooze, Mn-oxide crust, and an Fe-rich silicate (nontronite), the latter two being of hydrothermal origin. The major element composition of the hydrothermal deposits is similar in each mound hole, suggesting that formation conditions and hydrothermal solution composition have been constant both geographically and with time. The large variations which occur in the concentration of some trace elements in the Mn-oxide crusts and in transition metal ratios in the nontronite compared with the pelagic ooze suggests a hydrothermal supply to the mounds of Li, Mo, Pb, and Ba in addition to Mn, Fe, and silica.

The data are compatible with suggestions that the nontronite formed at depth in the pelagic sediment blanket by replacement of biogenic ooze, whilst the Mn crusts formed at or near the sediment-water interface. Pelagic sediments in the mounds which have not been replaced are similar in composition to pelagic sediments from non-mounds holes.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, T. J., and Friedrichsen, H. (1982) Chem. Geol. 36, 275–98.CrossRefGoogle Scholar
Bischoff, J. L., and Dickson, F. W. (1975) Earth Planet. Sci. Lett. 25, 385–97.CrossRefGoogle Scholar
Bonatti, E. (1975) Ann. Rev. Earth. Planet. Sci. 3, 401–31.CrossRefGoogle Scholar
Bonatti, E., Fisher, D. E., Joensuu, O., and Rydell, H. S. (1971) Geochim. Cosmochim. Ada. 35, 189201.CrossRefGoogle Scholar
Bonatti, E., T, Kraemer, and Rydell, H. (1972) In Ferromanganese Deposits on the Ocean Floor (Horn, D. R., ed.), Arden House, New York, 149–65.Google Scholar
Boström, K., and Peterson, M. N. A. (1969) Marine Geol. 7, 427–47.CrossRefGoogle Scholar
Boström, K., Joensuu, O., Moore, C, Bostrom, B., Dalziel, M., and Horowitz, A. (1973) Lithos. 6, 159–74.CrossRefGoogle Scholar
Calvert, S. E., and Price, N. B. (1977) In Marine Manganese Deposits (Glasby, G. P., ed.), Elsevier, Amsterdam, 4586.CrossRefGoogle Scholar
Corliss, J. B., Lyle, M., Dymond, J., and Crane, K. (1978) Earth Planet. Sci. Lett. 40, 1224.CrossRefGoogle Scholar
Cronan, D. S. (1972) In Ferromanganese Deposits on the Ocean Floor (Horn, D. R., ed.), Arden House, New York, 1930.Google Scholar
Cronan, D. S. (1975) In Chemical Oceanography (Riley, J. P. and Chester, R., eds.), Wiley Intersci. 5, 217–63.Google Scholar
Cronan, D. S. (1976) Bull. Geol. Soc. Am. 87, 928–34.2.0.CO;2>CrossRefGoogle Scholar
Dymond, J., Corliss, J. B., Heath, G. R., Field, C. W., Dasch, E. J., and Veeh, H. (1973) Ibid. 84, 3355–72.Google Scholar
Cobler, R., Muratli, C. M., Chou, C, and Conrad, R. (1980) In Initial Reports, Deep Sea Drilling Project. 54 (Rosendahl, B. R. and Hekinian, R., eds.), Washington (US Govt. Printing Office), 377–86.Google Scholar
Edmond, J. M., Measures, C, McDuff, R. E., Chan, L. H., Collier, R., Grant, B., Gordon, L. I., and Corliss, J. B. (1979) Earth Planet. Sci. Lett. 52, 142–50.Google Scholar
von Damm, K. L., McDuff, R. E., and Measures, C. I. (1982) Nature, 297, 187–91.Google Scholar
Grill, E. V., Chase, R. L., Macdonald, R. D., and Murray, J. W. (1981) Earth Planet. Sci. Lett. 52, 142–50.CrossRefGoogle Scholar
Harder, H. (1976) Chem. Geol. 18, 169–80.CrossRefGoogle Scholar
Heath, G. R., and Dymond, J. (1977) Bull. Geol. Soc. Am. 88, 723–33.2.0.CO;2>CrossRefGoogle Scholar
Hekinian, R., Rosendahl, B. R., Cronan, D. S., Dmitriev, Y., Fodor, R. V., Goll, R. M., Hoffert, M., Humphris, S. E., Mattey, D. P., Natland, J., Peterson, N., Roggenthen, W., Schrader, E. L., Srivastava, R. K., and Warren, N. (1978) Oceanol. Acta. 1, 423–82.Google Scholar
Hoffert, M, Perseil, A., Hekinian, R., Choukroune, P., Needham, H. D., Francheteau, J., and Le Pichon, X. (1978) Ibid. 1, 7386.Google Scholar
Person, A., Curtois, G., Karpoff, A. M., and Trauth, D. (1980) In Initial Reports, Deep Sea Drilling Project. 54 (B. R. Rosendahl and R. Hekinian, eds.), Washington (US Govt. Printing Office), 339–76.Google Scholar
Honnorez, J., von Herzen, R. P., Barrett, T. J., Becker, K., Bender, M. L., Borella, P. E., Hubberten, H. W., Jones, S. C Karato, S., Laverne, C, Levi, S., Migdisov, A. A., Moorby, S. A., and Schrader, E. L. (1981) Bull. Geol. Soc. Am. 92, 457–72.2.0.CO;2>CrossRefGoogle Scholar
Humphris, S., and Thompson, G. (1978a) Geochim. Cosmochim. Ada, 42, 107–25.CrossRefGoogle Scholar
Humphris, S., (1978b) Ibid. 42, 127136.CrossRefGoogle Scholar
Lynn, D., and Bonatti, E. (1965) Marine Geol. 3, 457–74.CrossRefGoogle Scholar
Maris, C. R. P., and Bender, M. L. (1982) Science, 216, 623–6.CrossRefGoogle Scholar
Moorby, S. A. (1983) Earth Planet. Sci. Lett. 62, 367–76.CrossRefGoogle Scholar
Moore, W. S., and Vogt, P. R. (1976) Ibid. 29, 349–56.Google Scholar
Murray, J. W., and Brewer, P. G. (1977) In Marine Manganese Deposits (Glasby, G. P., ed.), Elsevier, Amsterdam, 291326.CrossRefGoogle Scholar
Natland, J. H Rosendahl, B. R., Hekinian, R., Dmitriev, Y., Fodor, R., Goll, R., Hoffert, M., Humphris, S., Mattey, D., Peterson, N., Roggenthen, W., Schrader, E., Srivastava, R., and Warren, N. (1979) Science, 204, 613–16.CrossRefGoogle Scholar
Sayles, F. L., and Bischoff, J. L. (1973) Earth Planet. Sci. Lett. 19, 330–6.CrossRefGoogle Scholar
Scott, M. R., Scott, R. B., Rona, P. A., Butler, L. W., and Nalwalk, A. J. (1974) Geophys. Res. Lett. 1, 355–9.CrossRefGoogle Scholar
Seyfried, W., and Bischoff, J. L. (1977) Earth Planet. Sci. Lett. 34, 71–7.CrossRefGoogle Scholar
Seyfried, W., and Mottle, M. J. (1977) In Proc. 2nd Int. Symp. on Water-Rock Interaction (Pacquet, H. and Tordy, Y., eds.), Strasbourg, France, IV, 173–80.Google Scholar
Toth, J. R. (1980) Bull. Geol. Soc. Am. 91, 4454.2.0.CO;2>CrossRefGoogle Scholar
Varnavas, S. P., and Cronan, D. S. (1981) Mineral. Mag. 44, 325–331.CrossRefGoogle Scholar
Varnavas, S. P., and Moorby, S. A. (1983) In Initial Reports, Deep Sea Drilling Project. 70 (J. Honnorez and R. P. von Herzen, eds.), 297–302.Google Scholar
von der Borch, C. C, and Rex, R. W. (1970) Ibid. 5 (McManus, D., ed.), Washington (US Govt. Printing Office), 541–4.Google Scholar
Williams, D. L., Green, K., van Andel, Tj. H., von Herzen, R. P., Dymond, J. R., and Crane, K. (1979) J. Geophys. Res. 84, 7467–84.CrossRefGoogle Scholar