Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:58:06.238Z Has data issue: false hasContentIssue false

Geochemical characteristics and petrogenesis of the main granitic intrusions of Greece: an application of trace element discrimination diagrams

Published online by Cambridge University Press:  05 July 2018

E. Baltatzis
Affiliation:
University of Athens, Department of Geology, Panepistimiopolis, Ano llisia, Athens 15784, Greece
J. Esson
Affiliation:
University of Manchester, Department of Geology, Manchester M13 9PL, England
P. Mitropoulos
Affiliation:
University of Athens, Department of Geology, Panepistimiopolis, Ano llisia, Athens 15784, Greece

Abstract

Geochemical investigation of samples from 20 granitic intrusions in six tectonic zones of the Hellenides shows that both I-type and S-type granites occur in the region. The I-type granites from four of the zones, namely the Rhodope Massif (RM), the Serbomacedonian Massif (SMM), the Perirhodope Zone (PRZ) and the Attico-cycladic Zone (ACZ), show some systematic differences in their geochemistry. In particular, the Rb, Y, Nb, K and Ti contents increase in the sequence PRZ, SMM, RM and ACZ. The PRZ granites are of Jurassic age, those of the SMM and RM are Eocene to Oligocene and the ACZ ones are Miocene. The differences between zones are attributed to a combination of differences in partial melting and high-pressure fractionation processes. Geochemical differences within zones are explained by variable degrees of amphibole and apatite fractionation and accumulation.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altherr, R., Schliestedt, M., Okrusch, M., Seidel, E., Kreuzer, H., Haare, W., Lenz, H., Wendt, I., and Wagner, G. A. (1979) Geochronology of high-pressure rocks on Sifnos (Cyclades, Greece). Con-trib. Mineral. Petrol., 70, 245–55.CrossRefGoogle Scholar
Altherr, R. Kreuzer, H., Wendt, I., Lenz, H., Wagner, G., Keller, J., Harre, W., and Hohndorf, A. (1982) A late Oligocenc/early Miocene high-temperature belt in the Attic-Cycladic Crystalline Complex (SE Pela-gonian, Greece). Geol. Jahrb., E23, 97-164.Google Scholar
Andriesen, P. A. M., Boelrijk, N. A. I. M., Hebeda, E. H., Priem, H. N. A., Vcrdurmen, E. A. Th., and Verschure, R. H. (1979) Dating the events of metamorphism and granitic magmatism in the Alpine orogene of Naxos (Cyclades, Greece). Contrib. Mineral. Petrol., 69, 215–25.CrossRefGoogle Scholar
Augustidis, S. (1972) On the petrogenetic and geo-chemical relationship of the Mo-Cu-W-Bi hydro-thermal quartz veins and the Fe-Cu-W-Mo epidote-garnet skarn bodies (contact metasomatism) of the younger intrusive granite of Kimmeria (Xanthi, Greece). Seient. Annivers. Technic. Univ. of Athens, 2, 233–44.Google Scholar
Baltatzis, E. (1981) Contact metamorphism of a calc-silicate hornfels from Plaka area, Laurium, Greece. Neues Jahrb Mineral., Mh, 481-8.Google Scholar
Biju-Duval, B., Dercourt, J., and Le Pichon, X. (1977) From the Tethys Ocean to the Mediterranean seas: a plate tectonic model of the evolution of the western Alpine system. In International Symposium on the History of Mediterranean Basins (Split, Yugoslavia) (B. Biju-Duval and L. Montadert, eds). Technip, Paris', 143-64.Google Scholar
Borsi, S., Fcrrara, G., and Mercier, J. (1964) Determination de l'age des series metamorphiques de massif Serbo-Macedonien au nord-est de Thcssalonique (Grece) par les methodes Rb/Sr et K/Ar. Ann. Soc. Geol. Nord., 84, 223–5.Google Scholar
Brown, G. C., Hughes, D. J., and Esson, J. (1973) New XRF data retrieval techniques and their application to U.S.G.S. standard rocks. Chem. Geol., 11, 223–9.CrossRefGoogle Scholar
Brunn, J. H. (1956) Contribution a l'etude geologique du Pinde septcntrional et d'une partie de la Mace-doine occidentale. Ann. Geol. Pays Hellen., 7, 246 pp.Google Scholar
Channell, J. E. T. and Horvath, E. (1976) The African/ Adriatic promontory as a palaeogeographical premise for Alpine orogeny and plate movements in the Carpatho-Balkan region. Tectonophysics, 35, 71101.CrossRefGoogle Scholar
Christofides, G. (1977) Contribution to the study of plutonic rocks of the Xanthi area. Ph.D. Thesis, Univ. of Thessaloniki (unpubl.).Google Scholar
Dercourt, J. (1964) Contribution a I'etude geologique d'un secteurdu Peloponneseseptetrional. Ann. Geol. Pays Hellen., 15, 1418.Google Scholar
Dewey, J. F., Pitman, W. C., Ryan, W. B. F., and Bonnin, J. (1973) Plate tectonics and the evokltion of the Alpine system. Geol. Soc. Am. Bull., 84, 3137–80.2.0.CO;2>CrossRefGoogle Scholar
Dürr, S. and Altherr, R. (1979) Existence des klippes d'une nappe composite neogcne dans File de Myconos (Cyclades, Grece). Rapp. Comm. Int. Met. Medit., 25126 2a, 33- Monaco.Google Scholar
Dürr, S. and Altherr, R. Keller, J., Okrusch, M., and Seidel, E. (1978) The median Aegean crystalline belt: Stratigraphy, structure, metamorphism, magmatism. In Alps, Ap-penines, Hellenides (Closs, H., Roeder, D. H., and Schmidt, K., eds), 455-77.Google Scholar
Harre, W., Kockel, F., Kreuzer, H., Lenz, H., Muller, P., and Walther, H. W. (1968) Uber Rejuvenationen im Serbo-Mazedonischen Massiv (Deutung radio-metrischer Altersbestimmungen). Intr. Geol. Congress, 23, 6, 223–36.Google Scholar
Isaacs, M. C. I. (1975) Comparative geochemistry of selected Jamaican intrusive rocks. M.Sc. Thesis, Univ. of Leeds (unpubl.).Google Scholar
Jansen, J. B. H. (1977) The geology of Naxos. Geol. andGeophys. Res., 19, No. 1, IGME, Athens, 1-100.Google Scholar
Jansen, J. B. H. and Schuiling, R. D. (1976) Metamorphism of Naxos: Petrology and geothermal gradients. Am. J. Sci., 276, 1225–53.CrossRefGoogle Scholar
Katerinopoulos, A. E. (1983) Contribution to the study of platonic rocks of W. Varnoudas. Ph.D. Thesis, Univ. of Athens (unpubl.).Google Scholar
Kokkinakis, A. (1980) Altersbesiehungen zwischen metamorphosen mechanischen deformationen und intrusionen am stidrand des Rhodope-Massivs (Makedonien, Gricchenland). Geol. Rundschau, 69, 726–44.CrossRefGoogle Scholar
Kronberg, P. (1966) Petrographic and tektonik im Rhodopen-Kristallin des Tsal Dag, Simvolon und Ost-Pangaon (Griechisch-Makedonien). Neues Jahrb. Geol. Palaont., Mh., 7, 410–24.Google Scholar
Kronberg, P. Meyer, W., and Pilger, A. (1970) Geologie tier Rila-Rhodope-Masse zwischen Strimon und Nestos (Nord Griechenland). Beih. Geol. Jahrb., 88, 133–80.Google Scholar
Kyriakopoulos, K. G. (1987) Geochronological, geo-chemical and mineralogical study of some Tertiary platonic rocks of the Rhodope massif and their isotopic characteristics. Ph.D. Thesis, Univ. of Athens (unpubl.).Google Scholar
Le Breton, N. and Thompson, A. B. (1988) Fluid-absent (dehydration) melting of biotite in metapelites in the early stages of crustal anatexis. Contrib. Mineral. Petrol., 99, 226–37.CrossRefGoogle Scholar
Marakis, G. D. (1969) Geochronology studies of some granites from Macedonia. Ann. Geol. Pays ttell. 21, 121–52.Google Scholar
Marakis, G. D. (1973) Datations de roches des zones internes de la Grece. C.R. des Seances de la Soc. Phys. et l'Histoire Natur. de Geneve, 7, 52–8.Google Scholar
Marinos, O. P. and Petrascheck, W. E. (1956) Laurium. IGME Geol. Geophys. Studies, IV, No. 1.Google Scholar
Melidonis, N. (1980) The geological structure and mineral deposits of Tinos island (Cyclades, Greece). The geology of Greece, 13, 180.(Greek with English summary).Google Scholar
Meyer, W. (1966) Alterseinstufung von Tektonik and Metamorphose des Rhodopen-Kristallins im Bos Dag (Griechisch-Ostmazedonien). Neues Jahrb. Geol. Palaeont., Mh., 7, 399409.Google Scholar
Mountrakis, D. M. (1983) Structural geology of the North Pelagonian zone and the geotectonic evolution of the internal zones of the Hellenides (Macedonia, Greece). Docent Thesis, Univ. of Thessaloniki (unpubl.).Google Scholar
Papadakis, A. (1965) The plutonite of Serres-Drama. Ph.D. Thesis, Univ. of Thessaloniki (unpubl.).Google Scholar
Pearce, J. A., Harris, N. B. W., and Tindle, A. J. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956–83.CrossRefGoogle Scholar
Philippson, A. (1959) Das Aegaeische Meer und seine Inseln. Klosterman, Frankfurt.Google Scholar
Plant, J. A., O'Brien, C., Tarney, J., and Hurdley, J. (1985) Geochemical criteria for the recognition of high heat production granites. In High heat produc tion (HHG) granites, hydrothermal circulation and ore genesis. Inst. Mining and Metall., London, 263-85.Google Scholar
Salemink, J. (1985) Skarn and ore formation at Seriphos, Greece. Mededelingen van het lnstitunt voor Aardwetenschappen der Rijksuniversiteit te Utrecht, No. 40.Google Scholar
Smith, A. G. (1971) Alpine deformation and the oceanic areas of the Tethys, Mediterranean and Atlantic. Geol. Soc. Am. Bull., 82, 2039–70.CrossRefGoogle Scholar
Thompson, A. B. (1982) Dehydration melting of pelitic rocks and the generation of H20-undersaturated granitic liquids. Am. J. Sci., 282, 1567–95.CrossRefGoogle Scholar
Wendt, J., Raschka, H., Lenz, H., Kreuzer, H., Hohndorf, A., Harre, W., Wagner, G. A., Keller, J. Altherr, R., Okrusch, M., Schliestedt, M., and Seidel, E. (1977) Radiometric dating of crystalline rocks from the Cyclades (Aegean Sea, Greece). Fifth European Coll. of Geochron. Cosmochron. and Isotope Geol., Pisa. (vol. of abstracts).Google Scholar
Wood, D. A., Joron, J.-L., Treuil, M., Norry, M., and Tarney, J. (1979) Elemental and Sr isotope variations in basic lavas from Iceland and the surrounding ocean floor. Contrib. Mineral. Petrol., 70, 319–39.CrossRefGoogle Scholar