Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-25T17:03:03.896Z Has data issue: false hasContentIssue false

Fungal involvement in bioweathering and biotransformation of rocks and minerals

Published online by Cambridge University Press:  05 July 2018

E. P. Burford
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
M. Fomina
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
G. M. Gadd
Affiliation:
Division of Environmental and Applied Biology, Biological Sciences Institute, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK

Abstract

In the Earth’s lithosphere, fungi are of fundamental importance as decomposer organisms, animal and plant pathogens and symbionts (e.g. lichens and mycorrhizas), being ubiquitous in sub-aerial and subsoil environments. The ability of fungi to interact with minerals, metals, metalloids and organic compounds through biomechanical and biochemical processes, makes them ideally suited as biological weathering agents of rock and building stone. They also play a fundamental role in biogeochemical cycling of nutrients, (e.g. C, N, P and S) and metals (e.g. Na, Mg, Ca, Mn, Fe, Cu, Zn, Co and Ni) essential for the growth of living organisms in the biosphere. In addition they play an integral role in the mobilization and immobilization of non-essential metals (e.g. Cs, Al, Cd, Hg and Pb). Most studies on mineral-microbe interactions and microbial involvement in geological processes have concentrated on bacteria and archaea (Prokaryota): fungi (Eukaryota) have, to a certain extent, been neglected. This article addresses the role of fungi in geomicrobiological processes, emphasizing their deteriorative potential on rock, building stone and mineral surfaces and involvement in the formation of secondary mycogenic minerals. Such roles of fungi are also of importance for the global carbon reservoir and have potential biotechnological applications, e.g. in the bioremediation of xenobiotic-, metal- and/or radionuclide-contaminated soils and wastes, and metal/radionuclide recovery.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, J.B., Palmer, F. and Staley, J.T. (1992) Rock weathering in deserts — mobilization and concentra-tion of ferric iron by microorganisms. Geomicrobiology Journal, 10, 99114.CrossRefGoogle Scholar
Aristovskaya, T.V. (1980) Microbiology of the Processes of Soil Formation. Nauka, Leningrad, USSR (in Russian), 187 pp.Google Scholar
Arnott, H.J. (1995) Calcium oxalate in fungi. Pp. 73111 in: Calcium Oxalate in Biological Systems (Khan, S.R., editor). CRC Press, Boca Raton, Florida, USA.Google Scholar
Arocena, J.M., Glowa, K.R., Massicotte, H.B. and Lavkulich, L. (1999) Chemical and mineral compo-sition of ectomycorrhizosphere soils of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) in the Ae horizon of a Luvisol. Canadian Journal of Soil Science, 79, 2535.CrossRefGoogle Scholar
Atlas, R.M. and Bartha, R. (1998) Microbial Ecology. Benjamin Cummings. Redwood City, California, USA.Google Scholar
Babich, H. and Stotzky, G. (1977) Reduction in the toxicity of cadmium to microorganisms by clay minerals. Applied and Environmental Microbiology, 33, 696705.CrossRefGoogle Scholar
Banfield, J.F. and Nealson, K.H., editors (1998) Geomicrobiology: Interactions between Microbes and Minerals. Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.Google Scholar
Banfield, J.P., Barker, W.W., Welch, S.A. and Taunton, A. (1999) Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proceedings of the National Academy of Sciences USA, 96, 34043411.CrossRefGoogle ScholarPubMed
Barker, W.W. and Banfield, J.F. (1996) Biologically versus inorganically mediated weathering reactions: relationships between minerals and extracellular microbial polymers in lithobiotic communities. Chemical Geology, 132, 5569.CrossRefGoogle Scholar
Barker, W.W. and Banfield, J.F. (1998) Zones of chemical and physical interaction at interfaces between microbial communities and minerals: a model. Geomicrobiology Journal, 15, 223244.CrossRefGoogle Scholar
Bassi, M., Barbieri, N. and Bonecchi, R. (1984) St. Christophers church in Milan: biological investigations. Arte Lombarda, 68/69, 117121.Google Scholar
Bengston, S., editor (1994) Early Life on Earth. Columbia University Press, New York.Google Scholar
Bennett, P.C., Hiebert, F.K. and Choi, W.J. (1996) Microbial colonization and weathering of silicates in petroleum-contam inated groundwater. Chemical Geology, 132, 4553.CrossRefGoogle Scholar
Bennett, P.C., Hiebert, F.K. and Rogers, J.R. (2000) Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrogeology Journal, 8, 4762.CrossRefGoogle Scholar
Bergna, H.E. (1994) Colloid chemistry of silica - an overview. Colloid Chemistry of Silica, 234, 147.CrossRefGoogle Scholar
Berner, R.A. (1990) Atmospheric carbon dioxide levels over phanerozoic time. Science, 249, 13821386.CrossRefGoogle ScholarPubMed
Blazquez, F., Garcia-Vallez, M., Krumbein, W.E., Sterfiinger, K. and Vendrell-Saz, M. (1997) Microstromatolithic deposits on granitic monuments: development and decay. European Journal of Mineralogy, 9, 889901.CrossRefGoogle Scholar
Bogomolova, E.V., Vlasov, D.Yu. and Panina, L.K. (1998) On the nature of the microcolonial morphol¬ogy of epilithic black yeast. Phaeococcomyces de Hoog. Doklady of Russian Academy of Sciences, 363, 707709.Google Scholar
Bosetto, M., Arfaioli, P., Pantani, O.L. and Ristori, G.G. (1997) Study of the humic-like compounds formed from L-tyrosine on homoionic clays. Clay Minerals, 32, 341349.CrossRefGoogle Scholar
Brady, N.C. and Weil, R.R. (1999) The Nature and Properties of Soils. Prentice Hall, New Jersey.Google Scholar
Brandl, H. (2001) Heterotrophic leaching. Pp. 383423 in: Fungi in Bioremediation (Gadd, G.M., editor). Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Bruand, A. and Duval, O. (1999) Calcified fungal filaments in the petrocalcic horizon of Eutrochrepts in Beauce, France. Soil Science Society of America Journal, 63, 164169.CrossRefGoogle Scholar
Buick, R. (1990) Microfossil recognition in Archean rocks and appraisal of spheroids and filaments from a 3500 m.y. old chert barite unit at North Pole, Western Australia. Palois, 5, 441459.CrossRefGoogle Scholar
Burford, E.P., Kierans, M. and Gadd, G.M. (2003) Geomycology: fungal growth in mineral substrata. Mycologist (in press).CrossRefGoogle Scholar
Burford, E.P., Hillier, S. and Gadd, G.M. (2004) Mineralization of fungal hyphae with calcite (CaCO3) and calcium oxalate monohydrate (CaC2O4.H2O) in carboniferous limestone micro¬cosms. Geomicrobiology Journal (in revision).Google Scholar
Burgstaller, W. and Schinner, F. (1993) Leaching of metals with fungi. Journal of Biotechnology, 27, 91116.CrossRefGoogle Scholar
Callot, G., Guyon, A. and Mousain, D. (1985a Inter-relation entre aiguilles de calcite et hyphes myceliens. Agronomie, 5, 209216.CrossRefGoogle Scholar
Callot, G., Mousain, D. and Plassard, C. (1985b Concentrations de carbonate de calcium sur les parois des hyphes myceliens. Agronomie, 5, 143150.CrossRefGoogle Scholar
Callot, G., Maurette, M., Pottier, L. and Dubois, A. (1987) Biogenic etching of micro fractures in amorphous and crystalline silicates. Nature, 328, 147149.CrossRefGoogle Scholar
Calvet, F. (1982). Constructive micrite envelope developed in vadose continental environment in pleistocene eoliantes of Mallorca (Spain). Ada Geologica Hispanica, 17, 169178.Google Scholar
Chantigny, M.H., Angers, D.A., Prevost, D., Vezina, L.P. and Chalifour, F.P. (1997) Soil aggregation and fungal and bacterial biomass under annual and perennial cropping systems. Soil Science Society of America Journal, 61, 262267.CrossRefGoogle Scholar
Clause, H. and Filip, Z. (1990) Effects of clay and other solids on the activity of phenolozidases produced by some fungi and actinomyces.. Soil Biology and Biochemistry, 22, 483488.CrossRefGoogle Scholar
Cromack, K. Jr., SolMns, P., Grausten, W.C., Speidel, K., Todd, A.W., Spycher, G., Li, C.Y. and Todd, R.L. (1979) Calcium oxalate accumulation and soil weathering in mats of the hypogeous fungu. Hysterangium crassum. Soil Biology and Biochemistry, 11, 463468.CrossRefGoogle Scholar
Dahanayake, K. and Krumbein, W.E. (1985) Ultrastructure of a microbial mat-generated phos-phorite. Mineralium Deposita, 20, 260265.CrossRefGoogle Scholar
Dahanayake, K., Gerdes, K. and Krumbein, W.E. (1985) Stromatolites, oncolites, and oolites biogenically forme. in situ. Naturwissenschaften, 72, 513518.CrossRefGoogle Scholar
Decho, A.W. (2000) Exopolymer microdomains as a structuring agent for heterogeneity within microbial biofilms. Pp. 915 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
de la Torre, M.A. and Gomez-Alarcon, G. (1994) Manganese and iron oxidation by fungi isolated from building stone. Microbial Ecology, 27, 177188.CrossRefGoogle ScholarPubMed
M.A., de la Torre, Gomez-Alarcon, G., Vizcaino, C. and Garcia, M.T. (1993) Biochemical mechanisms of stone alteration carried out by filamentous fungi living on monuments. Biogeochemistry, 19, 129147.Google Scholar
De Los Rios, A., Wierzchos, J. and Ascaso, C. (2002) Microhabitats and chemical microenvironments under saxicolous lichens growing on granite. Microbial Ecology, 43, 181188.Google ScholarPubMed
Demaneche, S., Jocteur-Monrozier, L., Quiquampoix, H. and Simonet, P. (2001) Evaluation of biological and physical protection against nuclease degradation of clay-bound plasmid DNA. Applied and Environmental Microbiology, 67, 293299.CrossRefGoogle ScholarPubMed
de Rome, L. and Gadd, G.M. (1987) Copper adsorption b. Rhizopus arrhizus, Cladosporium resinae, and Penicillium italicum. Applied Microbiology and Biotechnology, 26, 8490.Google Scholar
Devevre, O., Garbaye, J. and Botton, B. (1996) Release of complexing organic acids by rhizosphere fungi as a factor in Norway Spruce yellowing in acidic soils. Mycological Research, 100, 13671374.CrossRefGoogle Scholar
Diercks, M., Sand, W. and Bock, E. (1991) Microbial corrosion of concrete. Experientia, 47, 514516.CrossRefGoogle Scholar
Dinelli, E. and Tateo, F. (2001) Sheet silicates as effective carriers of heavy metals in the ophiolitic mine area of Vigonzano (northern Italy). Mineralogical Magazine, 65, 121132.CrossRefGoogle Scholar
Dong, W.M., Wang, X.K., Bian, X.Y., Wang, A.X., Du, J.Z. and Tao, Z.Y. (2001) Comparative study on the sorption/desorption of radioeuropium on alumina, bentonite and red earth: effect of pH, ionic strength, fulvic acid, and iron oxide in red earth. Applied Radiation and Isotopes, 54, 603610.Google Scholar
Dorioz, J.M., Robert, M. and Chenu, C. (1993) The role of roots, fungi and bacteria on clay particles organization. An experimental approach. Geoderma, 56, 179194.CrossRefGoogle Scholar
Dube, A., Zbytniewski, R., Kowalkowski, T., Cukrowska, E. and Buszewski, B. (2001) Adsorption and migration of heavy metals in soil. Polish Journal of Environmental Studies, 10, 110.Google Scholar
Dumat, C., Quiquampoix, H. and Staunton, S. (2000) Adsorption of cesium by synthetic clay-organic matter complexes: effect of the nature of organic polymers. Environmental Science and Technology, 34, 29852989.CrossRefGoogle Scholar
Easton, R.M. (1997) Lichen-rock-mineral interactions: an overview. Pp. 209239 in: Biological-Mineralogical Interactions (McIntosh, J.M. and Groat, L.A., editors). Short Course Series, 21. Mineralogical Association of Canada, Ottawa, Ontario, Canada.Google Scholar
Eckhardt, F.E.W. (1985) Solubilisation, transport, and deposition of mineral cations by microorganisms-efficient rock-weathering agents. Pp. 161173 in: The Chemistry of Weathering (Drever, J., editor). NATO ASI Series C, 149, 161173.CrossRefGoogle Scholar
Ehrlich, H.L. (1996) Geomicrobiology. Marcel Dekker, New York.Google Scholar
Ehrlich, H.L. (1998) Geomicrobiology: its significance for geology. Earth-Science Reviews, 45, 4560.CrossRefGoogle Scholar
Etienne, S. (2002) The role of biological weathering in periglacial areas, a study of weathering in south Iceland. Geomorphology, 47, 7586.CrossRefGoogle Scholar
Farrah, H. and Pickering, W.F. (1976a The sorption of copper species by clays. 2. Illite and montmorillo-nite. Australian Journal of Chemistry, 29, 11771184.CrossRefGoogle Scholar
Farrah, H. and Pickering, W.F. (1976b The sorption of zinc species by clay minerals. Australian Journal of Chemistry, 29, 16491656.CrossRefGoogle Scholar
Ferris, F.G., Wiese, R.G. and Fyfe, W.S. (1994) Precipitation of carbonate minerals by microorgan-isms: implications for silicate weathering and the global carbon dioxide budget. Geomicrobiology Journal, 12, 113.CrossRefGoogle Scholar
Ferris, J.P. (2002) Montmorillonite catalysis of 30-50 mer oligonucleotides: laboratory demonstration of potential steps in the origin of the RNA world. Origins of Life and Evolution of the Biosphere, 32, 311332.CrossRefGoogle ScholarPubMed
Flemming, C.A., Ferris, F.G., Beveridge, T.J. and Bailey, G.W. (1990) Remobilization of toxic heavy metals adsorbed to bacterial wall-clay composites. Applied and Environmental Microbiology, 3, 191203.Google Scholar
Fletcher, M. (1987) How do bacteria attach to solid surfaces. Microbiological Sciences, 4, 133136.Google ScholarPubMed
Fogarty, R.V. and Tobin, J.M. (1996) Fungal melanins and their interactions with metals. Enzyme and Microbial Technolology, 19, 311317.CrossRefGoogle ScholarPubMed
Folk, R.L. and Chafetz, H.S. (2000) BacteriaUy induced microscale and nanoscale carbonate precipitates. Pp. 4149 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin, Heidelberg.Google Scholar
Fomina, M. and Gadd, G.M. (2002a Metal sorption by biomass of melanin-producing fungi grown in clay-containing medium. Journal of Chemical Technology and Biotechnology, 78, 2334.CrossRefGoogle Scholar
Fomina, M. and Gadd, G.M. (2002b Influence of clay minerals on the morphology of fungal pellets. Mycological Research, 106, 107117.CrossRefGoogle Scholar
Fomina, M.A., Kadoshnikov, V.M. and Zlobenko, B.P. (1999) Fungal biomass grown on media containing clay as a sorbent of radionuclides. Pp. 245254 in: Proceedings of the International Biohydrometallurgy Symposium IBS'99 ‘Biohydrometallurgy and the Environment toward the Mining of the 21s’ century', Elsevier, Madrid, Spain.Google Scholar
Fomina, M.A., Kadoshnikov, V.M., E.N., Gromosova and V.S., Podgorsky (2000) The role of clay minerals during fungal growth under extreme conditions. Pp. 146148 in: Proceedings of the International III International Seminar ‘Mineralogy and Life: Biomineral Homologies'. Geoprint, Syktyvkar, Russia.Google Scholar
Fujiyoshi, R., Eugene, A.S. and Katayama, M. (1992) Behaviour of radionuclides in the environment. 1. Sorption of Zn(II) on clay minerals. Applied Radiation and Isotopes, 43, 2231226.Google Scholar
Fredrickson, J.K. and Onstott, T.C. (1996) Microbes deep inside the earth. Scientific American, 8, 4247.Google Scholar
Fredrickson, J.K., McKinley, J.P., Nierzwicki-Bauer, S.A., White, D.C., Ringelberg, D.B., Rawson, S.A., Shu-Mei, L., Brockman, FJ. and Bjornstad, B.N. (1995) Microbial community structure and biogeo-chemistry of Miocene subsurface sediments: implications for long-term microbial survival. Molecular Ecology, 4, 619626.CrossRefGoogle Scholar
Friedman, E.I. and Ocampo, R. (1976) Endolithic blue-green algae in the dry valleys: primary producers in the Antarctic desert ecosystem. Science, 193, 12471249.CrossRefGoogle Scholar
Fujita, Y., Ferris, F.G., Lawson, D.R., Colswell, F.S. and Smith, R.W. (2000) Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal, 17, 305318.CrossRefGoogle Scholar
Gadd, G.M. (1984) Effect of copper o. Aureobasidium pullulans in solid medium: adaptation not necessary for tolerant behaviour. Transactions of the British Mycological Society, 82, 546549.Google Scholar
Gadd, G.M. (1986) The uptake of heavy metals by fungi and yeasts: the chemistry and physiology of the process and applications for biotechnology. Pp. 135147 in: Immobilization of Ions by Bio-sorption (Eccles, H. and Hunt, S., editors). Ellis Horwood Ltd, Chichester, UK.Google Scholar
Gadd, G.M. (1990) Fungi and yeasts for metal accumulation. Pp. 249275 in: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C., editors). McGraw-Hill, New York.Google Scholar
Gadd, G.M. (1992) Microbial control of heavy metal pollution. Pp. 5988 in: Microbial Control of Environmental Pollution (Fry, J.C., Gadd, G.M., Herbert, R.A., Jones, C.W. and Watson-Craik, I., editors). Cambridge University Press, Cambridge, UK.Google Scholar
Gadd, G.M. (1993) Interactions of fungi with toxic metals. New Phytologist, 124, 2560.CrossRefGoogle Scholar
Gadd, G.M. (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiol¬ogy and biogeochemical processes. Advances in Microbial Physiology, 41, 4792.CrossRefGoogle Scholar
Gadd, G.M. (2000a) Heavy metal pollutants: environ-mental and biotechnological aspects. Pp. 607617 in: Encyclopedia of Microbiology (Lederberg, J., editor). Academic Press, New York.Google Scholar
Gadd, G.M. (2000b) Bioremedial potential of microbial mechanisms of metal mobilization and immobiliza¬tion. Current Opinion in Biotechnology, 11, 271279.CrossRefGoogle Scholar
Gadd, G.M. (2001a) Metal transformations. Pp. 359382, in: Fungi in Bioremediation. (Gadd, G.M., editor). Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Gadd, G.M. (2001b) Accumulation and transformation of metals by microorganisms. Pp. 225264, in: Biotechnology, a Multi-volume Comprehensive Treatise, Volume 10: Special Processes. (Rehm, H.-J., Reed, G., Puhler, A. and Stadler, P., editors). Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
Gadd, G.M. (2002) Interactions between microorgan-isms and metals/radionuclides: the basis of bio-remediation. Pp. 179203 in: Interactions of Microorganisms with Radionuclides (Keith-Roach, MJ. and Livens, F.R., editors). Elsevier, Amsterdam.CrossRefGoogle Scholar
Gadd, G.M. and de Rome, L. (1988) Biosorption of copper by fungal melanin. Applied Microbiology and Biotechnology 29, 610617.CrossRefGoogle Scholar
Gadd, G.M. and Griffiths, A.J. (1980) Effect of copper on morphology o. Aureobasidium pullulans. Transactions of the British Mycological Society, 74, 387392.CrossRefGoogle Scholar
Gadd, G.M. and Mowll, J.L. (1995) Copper uptake by yeast-like cells, hyphae and chlamydospores o. Aureobasidium pullulans. Experimental Mycology, 9, 230240.Google Scholar
Gadd, G.M. and Sayer, J.A. (2000) Fungal transforma¬tions of metals and metalloids. Pp. 237256 in: Environmental Microbe-Metal Interactions (Lovley, D.R., editor). American Society for Microbiology, Washington, D.C.Google Scholar
Garnham, G.W., Codd, G.A. and Gadd, G.M. (1991) Uptake of cobalt and cesium by microalgal- and cyanobacterial-clay mixtures. Microbial Ecology, 25, 7182.Google Scholar
Gaylarde, C.C. and Morton, L.H.G. (1999) Deteriogenic biofilms on buildings and their control: a review. Biofouling, 14, 5974.CrossRefGoogle Scholar
Gerdes, G., Krumbein, W.E. and Noffke, N. (2000) Evaporite microbial sediments. Pp. 197207 in: Microbial Sediments (Riding, R.E., and Awramik, S.M., editors). Springer-Verlag, Berlin.Google Scholar
Gomez-Alarcon, G., Munoz, M.L. and Flores, M. (1994) Excretion of organic acids by fungal strains isolated from decayed limestone. International Biodeterioration and Biodegradation, 34, 169180.CrossRefGoogle Scholar
Gorbushina, A.A. and Krumbein, W.E. (2000) Subaerial microbial mats and their effects on soil and rock. Pp. 161169 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Gorbushina, A.A., Krumbein, W.E., Hamann, R., Panina, L., Soucharjevsky, S. and Wollenzien, U. (1993) On the role of black fungi in colour change and biodeterioration of antique marbles. Geomicrobiology Journal, 11, 205221.CrossRefGoogle Scholar
Goudie, A.S. (1996) Organic agency in calcrete development. Journal of Arid Environments, 32, 103110.CrossRefGoogle Scholar
Grace, J. (2001) Carbon cycle. Pp. 609629 in: Encyclopedia of Biodiversity. Academic Press, New York.CrossRefGoogle Scholar
Griffen, P.S., Indictor, N. and Koestler, R.J. (1991) The biodeterioration of stone, a review of deterioration mechanisms: conservation case histories and treat-ment. International Biodeterioration and Biodegradation, 28, 187207.CrossRefGoogle Scholar
Grote, G. and Krumbein, W.E. (1992) Microbial precipitation of manganese by bacteria and fungi from desert rock and rock varnish. Geomicrobiology Journal, 10, 4957.CrossRefGoogle Scholar
Gu, J.D., Ford, T.E., Berke, N.S. and Mitchell, R., (1998) Biodeterioration of concrete by the fungu. Fusarium. International Bioterioration and Biodegradation, 41, 101109.CrossRefGoogle Scholar
Haider, K., Filip, Z. and Martin, J.P. (1970) Einfluss von montmorillonit auf die buildung von biomass und stoffwechselzwischenproducten durch einige mikroorganismen. Archives of Microbiology, 73, 201215.Google Scholar
Haigler, S.A. (1969) Boring mechanism o. Polydora westeri inhabiting Crassostrea virginica. American Zoologist, 9, 821828.Google Scholar
Hammes, F. and Verstraete, W. (2002) Key roles of pH, and calcium metabolism in microbial carbonate precipitation. Reviews in Environmental Science and Biotechnology, 1, 37.CrossRefGoogle Scholar
Hartman, H. (1998) Photosynthesis and the origin of life. Origins of Life and Evolution of the Biosphere, 28, 515521.CrossRefGoogle ScholarPubMed
Heckman, D.S., Geiser, D.M., Eidell, B.R., Stauffer, R.L., Kardos, N.L. and Hedges, S.B. (2001) Molecular evidence for the early colonisation of land by fungi and plants. Science, 293, 11291133.CrossRefGoogle Scholar
Henderson, M.E.K. and Duff, R.B. (1963) The release of metallic and silicate ions from minerals, rocks and soils by fungal activity. Journal of Soil Science, 14, 236246.CrossRefGoogle Scholar
Hersman, L., Lloyd, T. and Sposito, G. (1995) Siderophore-promoted dissolution of hematite. Geochimica et Cosmochimica Acta, 59, 33273330.CrossRefGoogle Scholar
Hirsch, P., Eckhardt, F.E.W. and Palmer, R.J. (1995) Fungi active in weathering rock and stone monu-ments. Canadian Journal of Botany, 73, 13841390.CrossRefGoogle Scholar
Hochella, M.F. (2002) Sustaining Earth: thoughts on the present and future roles in mineralogy in environ¬mental science. Mineralogical Magazine, 66, 627652.CrossRefGoogle Scholar
Hoffland, E., Giesler, R., Jongmans, T. and van Breemen, N. (2002) Increasing feldspar tunneling by fungi across a north Sweden podzol chronose-quence. Ecosystems, 5, 1122.CrossRefGoogle Scholar
Horre, R. and de Hoog, G.S. (1999) Primary cerebral infections by melanized fungi: a review. Studies in Mycology, 43, 176193.Google Scholar
Howoritz, N.H., Cameron, R.E. and Hubbard, J.S. (1972) Microbiology of the dry valleys of Antarctica: studies in the world's coldest and driest desert have implications for the Mars biological program. Science, 176, 242245.CrossRefGoogle Scholar
Huang, W.H. and Keller, W.D. (1972) Organic acids as agents of chemical weathering of silicate minerals. Science, 239, 149151.Google Scholar
Inskeep, W.P. and Baham, J. (1983) Adsorption of Cd(II) and Cu(II) by Na-montmorillonite at low surface coverage. Soil Science Society of America Journal, 47, 660665.CrossRefGoogle Scholar
Jacobs, H., Boswell, G.P., Ritz, K., Davidson, F.A. and Gadd, G.M. (2002a Solubilization of calcium phosphate as a consequence of carbon translocation b. Rhizoctonia solani. FEMSMicrobiology Ecology, 40, 6571.Google Scholar
Jacobs, H., Boswell, G.P., Ritz, K., Davidson, F.A. and Gadd, G.M. (2002b Solubilization of metal phosphates b. Rhizoctonia solani. Mycological Research, 106, 14681479.CrossRefGoogle Scholar
Jarosz-Wilkolazka, A. and Gadd, G.M. (2003) Oxalate production by wood-rotting fungi growing in toxic metal-amended medium. Chemosphere, 52, 541547.CrossRefGoogle ScholarPubMed
Javor, B., editor (1989) Yeasts and Fungi. Pp. 163175 in: Hypersaline Environments: Microbiology and Biogeochemistry. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Johnstone, C.G. and Vestal, J.R. (1993) Biogeochemistry of oxalate in the antarctic cryp-toendolithic lichen-dominated community. Microbial Ecology, 25, 305319.Google Scholar
Jones, D., Wilson, M.J. and McHardy, W.J. (1981) Lichen weathering of rock forming minerals: application of scanning electron microscopy and microprobe analysis. Journal of Microscopy, 124, 95104.CrossRefGoogle Scholar
Jongmans, A.G., Van Breemen, N., Lungstrom, U., Van Hees, P.A.W., Finlay, R.D., Srinivasan, M., Unestam, T., Giesler, R., Melkerud, P.A. and Olsson, M. (1997) Rock-eating fungi. Nature, 389, 682683.CrossRefGoogle Scholar
Kadoshnikov, V.M., Zlobenko, B.P., Zhdanova, N.N. and Redchitz, T.I. (1995) Studies of application of micromycetes and clay composition for decontami-nation of building materials. Pp. 6163 in: Mixed Wastes and Environmental Restoration — Working Towards A Cleaner Environment, WM'95, Tucson, Arizona, USA.Google Scholar
Kahle, C.F. (1977) Origin of subaerial Holocene calcareous crusts: role of algae, fungi and sparmi-cristisation. Sedimentology, 24, 413435.CrossRefGoogle Scholar
Kantarcioglu, A.S., Yucel, A. and de Hoog, G.S. (2002) Case report. Isolation o. Cladosporium cladospor-ioides from cerebrospinal fluid. Mycoses, 45, 500503.Google Scholar
Kerr, S. and Zavada, M.S. (1989) The effect of the liche. Acarospora sinopica on the elemental composition of three sedimentary rock substrates in South Africa. The Bryologist, 92, 407410.Google Scholar
Khan, M. and Scullion, J. (2000) Effect of soil on microbial responses to metal contamination. Effect of soil on microbial responses to metal contamina-tion. Environmental Pollution, 110, 115125.CrossRefGoogle Scholar
Kikuchi, Y. and Sreekumari, K.R., (2002) Microbially influenced corrosion and biodeterioration of structur¬al metals. Journal of the Iron and Steel Institute of Japan, 88, 620628.CrossRefGoogle Scholar
Kirschvink, J.L., Gaidos, E.J., Bertani, L.E., Beukes, N.J., Gutzmer, J., Maepa, L.N. and Steinberger, R.E. (2000) Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proceedings of the National Academy of Sciences of the USA, 97, 14001405.CrossRefGoogle ScholarPubMed
Klappa, C.F. (1979a) Lichen stromatolites: criterion for subaeial exposure and mechanism for the formation of laminae calcretes (caliches). Journal of Sedimentary Petrology, 49, 387400.Google Scholar
Klappa, C.F. (1979b) Calcified filaments in Quaternary calcretes: organo-mineral interactions in the sub-aerial vadose environment. Journal of Sedimentary Petrology, 49, 955968.CrossRefGoogle Scholar
Knorre, Hv. and Krambein, W.E. (2000) Bacterial calcification. Pp. 2539 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Kraemer, S.M., Cheah, S.F., Zapf, R., Xu, J.D., Raymond, K.N. and Sposito, G. (1999) Effect of hydroxamate siderophores on Fe release and Pb(II) adsorption by goethite. Geochimica et Cosmochimica Ada, 63, 30033008.CrossRefGoogle Scholar
Krumbein, W.E. and Giele, C. (1979) Calcification in a coccoid cyanobacterium associated with the forma-tion of desert stromatolites. Sedimentology, 26, 593604.CrossRefGoogle Scholar
Krumbein, W.E., Urzi, C. and Gehrmann, C. (1991) On the biocorrosion and biodeterioration of antique and medieval glass. Geomicrobiology Journal, 9, 139160.CrossRefGoogle Scholar
Krumhansl, J.L., Brady, P.V. and Anderson, H.L. (2001) Reactive barriers for Cs-137 retention. Journal of Contaminant Hydrology, 47, 233240.CrossRefGoogle Scholar
Kukovsky, Ye.G. (1966) Peculiarities of Structure and Physico-Chemical Properties of Clay Minerals. Naukova Dumka, Kiev. (in Russian).Google Scholar
Kumar, R. and Kumar, A.V. (1999) Biodeterioration of Stone in Tropical Environments: an Overview. The J. Paul Getty Trust, USA.Google Scholar
Kurdish, I.K. and Kigel, N.F. (1992) Effect of palygorskyte, a clay mineral, on physiologycal activity and adhesion of methanotrophic bacteria. Mikrobiologichesky Zhurnal, 54, 7378. (in Russian).Google Scholar
Kurdish, I.K. and Titova, L.V. (2000) Granular preparations o. Azotobacter containing clay miner¬als. Applied Biochemical Microbiology, 36, 418420.CrossRefGoogle Scholar
Kutuzova, R.S. (1969) The release of silica from minerals as a result of microbial activity. Microbiologiya, 38, 714721. (in Russian).Google Scholar
Leboda, R., Chodorowsky, S., Skubiszewska-Zieba, J. and Tarasevich, Y. I. (2001) Effect of the carbonaceous matter deposition on the textural and surface properties of complex carbon-mineral adsorbents prepared on the basis of palygorskite. Colloids and Surfaces. A — Physicochemical and Engineering Aspects, 178, 113128.Google Scholar
Lee, G.H. and Stotzky, G. (1999) Transformation and survival of donor, recipient, and transformants o. Bacillus subtilis in vitro and in soil. Soil Biology and Biochemistry, 31, 14991508.CrossRefGoogle Scholar
Liermann, L.J., Kalinowski, B.E., Brantley, S.L. and Ferry, J.G. (2000) Role of bacterial siderophores in dissolution of hornblende. Geochimica et Cosmochimica Ada, 64, 587602.CrossRefGoogle Scholar
Li, L.Y. and Li, R.S. (2000) The role of clay minerals and the effect of H+ ions on removal of heavy metal (Pb2+) from contaminated soils. Canadian Geotechnology Journal, 37, 296307.CrossRefGoogle Scholar
Lotareva, O.V. and Prozorov, A.A. (2000) Effect of the clay minerals montmorillonite and kaolinite on the generic transformation of competen. Bacillus subtilis cells. Microbiology, 69, 571574.Google Scholar
Lovley, D.R. (1991) Dissimilatory Fe(III) and Mn (IV) reduction. Microbiological Reviews, 55, 259287.CrossRefGoogle ScholarPubMed
Lower, S., Hochella, M.F., Jr. and Beveridge, T.J. (2001a) Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and a-FeOOH. Science, 292, 13601363.CrossRefGoogle Scholar
Lundstrom, U.S., Van Breemen, N. and Bain, D. (2000) The podzolization process. A review. Geoderma, 94, 91107.CrossRefGoogle Scholar
Lunsdorf, H., Erb, R.W., Abraham, W.R., Timmis, K.N. (2000) ‘Clay hutches': a novel interaction between bacteria and clay minerals. Environmental Microbiology, 2, 161168.CrossRefGoogle ScholarPubMed
Machel, H.G. and Foght, J. (2000) Products and depth limits of microbial activity in petroliferous subsur-face settings. Pp. 104119 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.Google Scholar
Mandal, S.K., Roy, A. and Banerjee, P.C. (2002) Iron leaching from china clay by fungal strains. Transactions of the Indian Institute of Metals, 55, 17.Google Scholar
Manley, E. and Evans, L. (1986) Dissolution of feldspars by low-molecular-weight aliphatic and aromatic acids. Soil Science, 141, 106112.CrossRefGoogle Scholar
Manoli, F., Koutsopoulos, E. and Dalas, E. (1997) Crystallization of calcite on chitin. Journal of Crystal Growth, 182, 116124.CrossRefGoogle Scholar
Marshall, K.C. (1988) Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Canadian Journal of Microbiology, 34, 593606.CrossRefGoogle Scholar
Martens, D.A. and Frankenberger, J.W.T. (1992) Decomposition of bacterial polymers in soil and their influence on soil structure. Biology and Fertility of Soils, 13, 6573.CrossRefGoogle Scholar
Martin, J.P., Filip, Z. and Haider, K. (1976) Effect of montmorillonite and humate on growth and meta-bolic activity of some actinomycetes. Soil Biology and Biochemistry, 8, 409413.CrossRefGoogle Scholar
Martino, E., Perotto, S., Parsons, R. and Gadd, G.M. (2003) Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133141.CrossRefGoogle Scholar
Matthes, U., Ryan, B.D. and Larson, D.W. (2000) Community structure of epilithic lichens on the cliffs of the Niagara Escarpment, Ontario, Canada. Plant Ecology, 148, 233244.CrossRefGoogle Scholar
Maurice, P.A., Hochella, M.F., Parks, G.A., Sposito, G. and Schwertmann, U. (1995) Evolution of hematite surface microtopography upon dissolution by simple organic acids. Clays and Clay Minerals, 43, 2938.CrossRefGoogle Scholar
McEldowney, S. and Fletcher, M. (1986) Effect of growth conditions and surface characteristics of aquatic bacteria on their attachment to solid surfaces. Journal of General Microbiology 132, 513523.Google Scholar
McMenamin, M. and McMenamin, D. (1994) Hypersea-life on Land. Columbia University Press, New York, 343 pp.Google Scholar
Mehta, A.P., Torma, A.E. and Murr, L.E. (1979) Effect of environmental parameters on the efficiency of biodegradation of basalt rock by fungi. Biotechnology and Bioengineering, 21, 875885.CrossRefGoogle Scholar
Money, N.P. (1999) Biophysics: fungus punches its way in. Nature, 401, 332333.CrossRefGoogle Scholar
Money, N.P. (2001) Biomechanics of invasive hyphal growth. Pp. 317 in: The Mycota VIII (Esser, K., editor). Springer-Verlag, Berlin.Google Scholar
Money, N.P. and Howard, R.J. (1996) Confirmation of a link between fungal pigmentation, turgor pressure, and pathogenicity using a new method of turgor measurement. Fungal Genetics and Biology, 20, 217227.CrossRefGoogle Scholar
Monger, C.H. and Adams, H.P. (1996) Micromorphology of calcite-silica deposits, Yucca Mountain, Nevada. Soil Science Society of America Journal, 60, 519530.CrossRefGoogle Scholar
Morley, G.F. and Gadd, G.M. (1995) Sorption of toxic metals by fungi and clay minerals. Mycological Research, 99, 14291438.CrossRefGoogle Scholar
Morley, G., Sayer, J., Wilkinson, S., Gharieb, M. and Gadd, G.M. (1996) Fungal sequestration, solubiliza-tion and transformation of toxic metals. Pp. 235256 in: Fungi and Environmental Change (Frankland, J.C., Magan, N. and Gadd, G.M., editors). Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Muller, B., Burgstaller, W., Strasser, H., Zanella, A. and Schinner, F. (1995) Leaching of zinc from an industrial filter dust wit. Penicillium, Pseudomonas and Corynebacterium: citric acid is the leaching agent rather than amino acids. Journal of Industrial Microbiology, 14, 208212.Google Scholar
Nealson, K.H. and Saffarini, D. (1994) Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annual Reviews in Microbiology, 48, 311343.CrossRefGoogle ScholarPubMed
Neubauer, U., Nowack, B., Furrer, G. and Schulin, R. (2000) Heavy metal sorption on clay minerals affected by siderophore desferrioxamine B. Environmental Science and Technology, 34, 27492755.CrossRefGoogle Scholar
Nica, D., Davis, J.L., Kirby, L., Zuo, G. and Roberts, DJ. (2000) Isolation and characterization of micro-organisms involved in the biodeterioration of concrete in sewers. International Biodeterioration and Biodegradation, 46, 6168.CrossRefGoogle Scholar
Nordstrom, D.K. and Southam, G. (1997) Geomicrobiology of sulfide mineral oxidation. Pp. 361390 in: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Reviews in Mineralogy, 35. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Paris, F., Bonnaud, P., Ranger, J. and Lapeyrie, F. (1995) In vitro weathering of phlogopite by ectomycorrhizal fungi. Plant and Soil, 177, 191201.CrossRefGoogle Scholar
Pearson, V.K., Sephton, M.A., Kearsley, A.T., Bland, P.A., Franchi, L.A. and Gilmour, I. (2002) Clay mineral-organic matter relationships in the early solar system. Meteoritics and Planetary Science, 37, 18291833.CrossRefGoogle Scholar
Pedersen, K. (1999) Subterranean microorganisms and radioactive waste disposal in Sweden. Engineering Geology, 52, 163—17.CrossRefGoogle Scholar
Pereira, M.O., Vieira, M.J. and Melo, L.F. (2000) The effect of clay particles on the efficacy of a biocide. Water Science and Technology, 41, 6164.CrossRefGoogle Scholar
Perfettini, J.V., Revertegat, E. and Langomazino, N. (1991) Evaluation of cement degradation by the metabolic activities of two fungal strains. Experientia, 47, 527533.CrossRefGoogle Scholar
Pitonzo, B.J., Amy, P.S. and Rudin, M. (1999) Effect of gamma radiation on native endolithic microorgan-isms from a radioactive waste deposit site. Radiation Research, 152, 64—7.CrossRefGoogle Scholar
Prieto Lamas, B., Rivas Brea, M.T. and Silva Hermo, B.M. (1995) Colonization by lichens of granite churches in Galicia (northwest Spain). Science of the Total Environment, 167, 343351.CrossRefGoogle Scholar
Porter, T.L., Eastman, M.P., Whitehorse, R., Bain, E. and Manygoats, K. (2000) The interaction of biological molecules with clay minerals: a scanning force microscopy study. Scanning, 22, 15.CrossRefGoogle ScholarPubMed
Puget, P., Angers, D.A. and Chenu, C. (1999) Nature of carbohydrates associated with water-stable aggre-gates of two cultivated soils. Soil Biology and Biochemistry, 31, 5563.CrossRefGoogle Scholar
Putnis, A. (2002) Mineral replacement reactions: from macroscopic observations to microscopic mechan-isms. Mineralogical Magazine, 66, 689708.CrossRefGoogle Scholar
Rawlings, D.E., Dew, D. and du Plessis, C. (2003) Biomineralization of metal-containing ores and concentrates. Trends in Biotechnology, 21, 3844.CrossRefGoogle ScholarPubMed
Redman, R.S., Litvintseva, A., Sheehan, K.B., Henson, J.M. and Rodriguez, R. (1999) Fungi from geothermal soils in Yellowstone National Park. Applied and Environmental Microbiology, 65, 51935197.CrossRefGoogle ScholarPubMed
Renaut, R.W. and Jones, B. (2000) Microbial pre-cipitates around continental hot springs. Pp. 187195 in: Microbial Sediments (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Riding, R. (2000) Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47, 179214.CrossRefGoogle Scholar
Rikkinen, J. and Poinar, G.O. (2000) A new species of resinicolou. Chaenothecopis (Mycoaliciaceae, Ascomycota) from 20 million year old Bitterfield amber, with remarks on the biology of resinicolous fungi. Mycological Research, 104, 715.Google Scholar
Rikkinen, J. and Poinar, G.O. (2001) Fossilised fungal mycelium from Tertiary Dominican amber. Mycological Research, 105, 890896.CrossRefGoogle Scholar
Rivadeneyra, M.A., Delgado, R., Delgado, G., Del Moral, A., Ferrer, M.R. and Ramos-Cormenzana, A. (1993) Precipitation of carbonates by Bacillus sp. isolated from saline soils. Geomicrobiology Journal, 11, 175184.CrossRefGoogle Scholar
Roberts, D.J., Nica, D., Zuo, G. and Davis, J.L. (2002) Quantifying microbially induced deterioration of concrete: initial studies. International Biodeterioration and Bio degradation, 49, 227234.CrossRefGoogle Scholar
Rodriguez Navarro, C, Sebastian, E. and Rodriguez Gallego, M. (1997) An urban model for dolomite precipitation: authigenic dolomite on weathered building stones. Sedimentary Geology, 109, 111.CrossRefGoogle Scholar
Rogers, J.R., Bennet, P.C. and Choi, W.J. (1998) Feldspars as a source of nutrients for microorgan-isms. American Mineralogist, 83, 15321540.CrossRefGoogle Scholar
Rossi, G. (1979) Potassium recovery through leucite bioleaching: possibilities and limitations. Pp. 279319 in: Metallurgical Applications of Bacterial Leaching and Related Phenomena (Murr, L.E., Torma, A.E. and Brierley, J.E., editors). Academic Press, New York.Google Scholar
Rossi, G. and Ehrlich, H.L. (1990) Other bioleaching processes. Pp. 149170 in: Microbial Mineral Recovery (Ehrlich, H.L. and Brierley, C.L., editors). McGraw-Hill, New York.Google Scholar
Sayer, J.A., Kierans, M. and Gadd, G.M. (1997) Solubilization of some naturally occurring metal-bearing minerals, limescale and lead phosphate b. Aspergillus niger. FEMS Microbiology Letters, 154, 2935.CrossRefGoogle Scholar
Schlecht-Pietsch, S., Wagner, U. and Anderson, T.H. (1994) Changes in composition of soil polysacchar- ides and aggregate stability after carbon amendments to different textured soils. Applied Soil Ecology, 1, 145154.CrossRefGoogle Scholar
Schopf, J.W. (1993) Microfossils of the early Archean Apex Chert; new evidence of the antiquity of life. Science, 260, 640644.CrossRefGoogle ScholarPubMed
Schwartzman, D.J. and Volk, T. (1989) Biotic enhance¬ment of weathering and the habitability of Earth. Nature, 340, 457460.CrossRefGoogle Scholar
Silverman, M.P. and Munoz, E.F. (1970) Fungal attack on rock: solubilisation and altered infra-red spectra. Science, 169, 985987.CrossRefGoogle Scholar
Skujins, JJ. (1967) Enzymes in soil. Pp. 371414 in: Soil Biochemistry (McLaren, A.D. and Peterson, G.H., editors). Marcel Dekker, New York.Google Scholar
Sollas, W.J. (1880) On the action of a lichen on a limestone. Report, British Association for the Advancement of Science, 586 pp.Google Scholar
Staley, J.T., Palmer, F. and Adams, J.B. (1982) Microcolonial fungi: common inhabitants on desert rocks. Science, 215, 10931095.CrossRefGoogle ScholarPubMed
Sterfiinger, K. (2000) Fungi as geologic agents. Geomicrobiology Journal, 17, 97124.CrossRefGoogle Scholar
Stevenson, FJ. (1994) Humus Chemistry: Genesis, Composition and Reactions. John Wiley & Sons, New York.Google Scholar
Stone, A.T. (1997) Reactions of extracellular organic ligands with dissolved metal ions and mineral surface. Pp. 309-341 in: Geomicrobiology: Interactions between Microbes and Minerals (Banfield, J.F. and Nealson, K.H., editors). Mineralogical Society of America, Washington, D.C..Google Scholar
Stotzky, G. (1966) Influence of clay minerals on microorganisms — II. Effect of various clay species, homoionic clays, and other particles on bacteria. Canadian Journal of Microbiology, 12, 831848.CrossRefGoogle Scholar
Stotzky, G. (2000) Persistence and biological activity in soil of insecticidal proteins fro. Bacillus thurin- giensis and of bacterial DNA bound on clays and humic acids. Journal of Environmental Quality, 29, 691705.Google Scholar
Styriakova, I. and Styriak, I. (2000) Iron removal from kaolins by bacterial leaching. Ceramics -Silikaty, 44, 135141.Google Scholar
Summer, D.Y. (2000) Microbial vs environmental influences on the morphology of late Archean Fenestrate microbialites. Pp. 307313 in: Microbial Sediments (Riding, A.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.CrossRefGoogle Scholar
Taylor, T.N. and White, J.F., Jr. (1989) Fossil fungi (Endogonaceae) from the triassic of Antarctica. American Journal of Botany, 76, 389396.CrossRefGoogle Scholar
Taylor, T.N., Hass, H. and Kerp, H. (1999) The oldest fossil ascomycetes. Nature, 399, 684.CrossRefGoogle ScholarPubMed
Thompson, J.B. and Ferris, F.G. (1990) Cyanobacterial precipitation of gypsum, calcite and magnesite from natural alkaline lake water. Geology, 18, 995998.2.3.CO;2>CrossRefGoogle Scholar
Timonin, M.I., IUman, W.I. and Hartgerink, T. (1972) Oxidation of manganous salts of manganese by soil fungi. Canadian Journal of Botany, 18, 793799.Google ScholarPubMed
Tisdall, J.M., Smith, S.E. and Rengasamy, P. (1997) Aggregation of soil by fungal hyphae. Australian Journal of Soil Research, 35, 5560.CrossRefGoogle Scholar
Trevors, J.T. (1996) DNA in soil: Adsorption, genetic transformation, molecular evolution and genetic microchip. Antonie van Leeuwenhoek, 70 110.CrossRefGoogle ScholarPubMed
van Bladel, R., Halen, H. and Cloose, P. (1993) Calcium-zinc and calcium-cadmium exchange in suspensions of various types of clays. Clay Minerals, 28, 3338.CrossRefGoogle Scholar
Vaughan, D.J., Pattrick, R.A.D. and Wogelius, R.A. (2002) Minerals, metals and molecules: ore and environmental mineralogy in the new millennium. Mineralogical Magazine, 66, 653676.CrossRefGoogle Scholar
Verrecchia, E.P., Dumont, J.L. and Rolko, K.E. (1990) Do fungi building limestones exist in semi-arid regions? Naturwissenschaften, 77, 584586.CrossRefGoogle Scholar
Verrecchia, E.P. (2000) Fungi and sediments. Pp. 6975 in: Microbial Sediment's (Riding, R.E. and Awramik, S.M., editors). Springer-Verlag, Berlin.Google Scholar
Vettori, C, Gallon, E. and Stotzky, G. (2000) Clay minerals protect bacteriophage PBS1 o. Bacillus subtilis against inactivation and loss of trunsducing ability by UV radiation. Canadian Journal of Microbiology, 46, 770773.Google Scholar
Volesky, B. and Holan, Z.R. (1995) Biosorption of heavy metals. Biotechnology Progress, 11, 235250.CrossRefGoogle ScholarPubMed
Voudrias, E.A. (2002) The concept of a sorption chemical barrier for improving effectiveness of landfill liners. Waste Management and Research, 20, 251258.CrossRefGoogle ScholarPubMed
Warren, L.A., Maurice, P.A., Parmer, N. and Ferris, F.G. (2001) Microbially mediated calcium carbonate precipitation: implications for interpreting calcite precipitation and for solid-phase capture of inorganic contaminants. Geomicrobiology Journal, 18, 93115.Google Scholar
Watts, H.J., Very, A.A., Perera, T.H.S., Davies, J.M. and Gow, N.A.R. (1998) Thigmotropism and stretch-activated channels in the pathogenic fungus. Candida albicans. Microbiology, 144, 689695.Google ScholarPubMed
Webley, D.M., Henderson, M.E.F. and Taylor, I.F. (1963) The microbiology of rocks and weathered stones. Journal of Soil Science, 14, 102112.CrossRefGoogle Scholar
Welch, S.A. and Vandevivere, P. (1994) Effect of microbial and other naturally occurring polymers on mineral dissolution. Geomicrobiology Journal, 12, 227238.CrossRefGoogle Scholar
Welch, S.A., Barker, W.W. and Banfield, J.F. (1999) Microbial extracellular polysaccharides and plagio-clase dissolution. Geochimica et Cosmochimica Acta, 63, 14051419.CrossRefGoogle Scholar
Wheeler, M.H. and Bell, A.A. (1987) Melanins and their importance in pathogenic fungi. Pp. 338385 in: Current Topics in Medical Mycology 2 (McGuiness, M.R., editor). Springer-Verlag, New York.Google Scholar
White, I.D., Mottershead, D.N. and Harrison, S.J. (1992) Environmental Systems: An Introductory Text. Chapman & Hall, London, UK.CrossRefGoogle Scholar
Wild, A. (1993) Soils and the Environment: an Introduction. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
Wilson, MJ. (1975) Chemical weathering of some primary rock-forming minerals. Soil Science, 119, 349355.CrossRefGoogle Scholar
Winter, D. and Zubay, G. (1995) Binding of adenine-related compounds to the clay montmorillonite and the mineral hydroxyapatite. Origin of Life and Evolution of the Biosphere, 25, 6181.CrossRefGoogle Scholar
Wolfaardt, G.M., Lawrence, J.R., Robarts, R.D., Caldwell, S.J. and Caldwell, D.E. (1994) Multicellular organization in a degradative biofilm community. Applied and Environmental Microbiology, 60, 434446.CrossRefGoogle Scholar
Wollenzien, U., de Hoog, G.S., Krumbein, W.E. and Urzi, C. (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Science of the Total Environment, 167, 287294.CrossRefGoogle Scholar
Zhdanova, N.N., Vasilevskaya, A.I., Gavrilyuk, V.I., Sholokh, E.L. and Koval, L.A. (1990) Radioactive strontium accumulation by some soil micromycetes in model experiments. Mycologiya I Fytopatologiya, 24, 106111. (in Russian).Google Scholar
Zhdanova, N.N., Zakharchenko, V.A., Vember, V.V. and Nakonechnaya, L.T. (2000) Fungi from Chernobyl: mycobiota of the inner regions of the containment structures of the damaged nuclear reactor. Mycological Research, 104, 14211426.CrossRefGoogle Scholar
Zhdanova, N., Fomina, M., Redchitz, T. and Olsson, S. (2001) Chernobyl effects: growth characteristics of soil fung. Cladosprorium cladosporioides (Fresen) de Vries with and without positive radiotropism. Polish Journal of Ecology, 49, 309318.Google Scholar
Zvyagintcev, D.G. (1987) Soil and Microorganisms. Moscow University, Moscow, Russia.(in Russian).Google Scholar