Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T08:29:34.388Z Has data issue: false hasContentIssue false

First crystal-structure determination of natural lansfordite, MgCO3·5H2O

Published online by Cambridge University Press:  02 January 2018

Fabrizio Nestola*
Affiliation:
Dipartimento di Geoscienze, Università di Padova, Via Gradenigo 6, I-35131, Padova, Italy
Anatoly V. Kasatkin
Affiliation:
Fersman Mineralogical Museum of Russian Academy of Sciences, Leninsky Prospekt 18-2, Moscow, 119071 Russia
Sergey S. Potapov
Affiliation:
Institute of Mineralogy, Ural Branch of Russian Academy of Sciences, Miass, Chelyabinsk Oblast’, 456317 Russia
Olga YA. Chervyatsova
Affiliation:
State Nature Reserve «Shulgan-Tash», Zapovednaya 14, Irgyzly, Burzyansk District, Bashkortostan Republic, 453585 Russia
Arianna Lanza
Affiliation:
Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
*

Abstract

This study presents the first crystal-structure determination of natural MgCO3·5H2O, mineral lansfordite, in comparison with previous structural works performed on synthetic analogues. A new prototype single-crystal X-ray diffractometer allowed us to measure an extremely small crystal (i.e. 0.020 mm × 0.010 mm × 0.005 mm) and refine anisotropically all non-hydrogen atoms in the structure and provide a robust hydrogen-bond arrangement. Our new data confirm that natural lansfordite can be stable for several months at room temperature, in contrast with previous works, which reported that such a mineral could be stable only below 10°C.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J. and Nestola, F. (2016) A century of mineral structures: how well do we know them? American Mineralogist, 101, 10361045.CrossRefGoogle Scholar
Bariand, P., Cesbron, F.P., Vachey, H., Sadrzadeg, M. (1973) Hydromagnesite from Soghan, Iran. Mineralogical Record, 4, 1820.Google Scholar
Beinlich, A. and Austrheim, H. (2012) In situ sequestration of atmospheric CO2 at low temperature and surface cracking of serpentinized peridotite in mine shafts. Chemical Geology, 332, 3244.CrossRefGoogle Scholar
De Vito, C., Ferrini, V., Mignardi, S., Cagnetti, M. and Leccese, F. (2012) Progress in carbon dioxide sequestration via carbonation of aqueous saline wastes. Periodico di Mineralogia, 81, 333344.Google Scholar
Dell, R.M. and Weller, S.W. (1959) The thermal decomposition of nesquehonite MgCO3·3H2O and magnesium ammonium carbonate MgCO3(NH4)2CO3·4H2O. Transactions Faraday Society, 55, 22032220.CrossRefGoogle Scholar
Garvie, L.A.J. (2003) Decay-induced biomineralization of the saguaro cactus (Carnegiea gigantea). American Mineralogist, 88, 18791888.CrossRefGoogle Scholar
Genth, F.A. (1888) On lansfordite, a new mineral. Zeitschrift für Kristallographie, Mineralogie und Petrographie, 14, 255.Google Scholar
Harner, P.L. and Gilmore, M.S. (2015) Visible-near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars. Icarus, 250, 204214.CrossRefGoogle Scholar
Hill, R.J., Canterford, J.H. and Moyle, F.J. (1982) New data for lansfordite. Mineralogical Magazine, 46, 453457.CrossRefGoogle Scholar
Hopkinson, L. Kristova, P., Rutt, K. and Cressey, G. (2012) Phase transitions in the system MgO–CO2–H2O during CO2 degassing of Mg-bearing. Geochimica et Cosmochimica Acta, 76, 113.CrossRefGoogle Scholar
Hwang, K.Y., Seo, J.Y., Phan, H.Q.H., Ahn, J.Y. and Hwang, I. (2014) MgO-based binder for treating contaminated sediments: characteristics of metal stabilization and mineral carbonation. Clean-Soil Air Water, 42, 355363.CrossRefGoogle Scholar
Liu, B., Zhou, X. and Cui, X. (1990) Synthesis of lansfordite MgCO3·5H2O and its crystal structure investigation. Science in China, 33, 13501356.Google Scholar
Ming, D.W. and Franklin, W.T. (1985) Synthesis and characterization of lansfordite and nesquehonite. Soil Science Society of America Journal, 49, 13031308.CrossRefGoogle Scholar
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana. 7th edition, Vol. 2. John Wiley and Sons, New York [pp. 228230].Google Scholar
Poitevin, E. (1924) A new occurrence of lansfordite from Atlin, B.C. American Mineralogist, 9, 225228.Google Scholar
Potapov, S.S., Parchina, N.V., Chervyatsova, O.Y. and Yakubson, P.Y. (2015) The finding of the rare natural crystallohydrate lansfordite MgCO3·5H2O. Mineralogy, 3, 2330.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica Section A, 64, 112122.Google Scholar
Tavangarian, F. and Li, G. (2014) Mechanical activation assisted synthesis of nanostructure MgAl2O4 fromgibbsite and lansfordite. Powder Technology, 267, 333338.CrossRefGoogle Scholar
Vagvolgyi, V., Frost, R.L., Hales, M., Locke, A., Kristof, J. and Horvath, E. (2008) Controlled rate thermal analysis of hydromagnesite. Journal of Thermal Analysis and Calorimetry, 92, 893897.CrossRefGoogle Scholar
Velbel, M.A., Long, D.T. and Gooding, J.L. (1991) Terrestrial weathering of Antarctic stone meteorites – Formation of Mg-carbonates on ordinary chondrites. Geochimica et Cosmochimica Acta, 55, 6776.CrossRefGoogle Scholar
Wilson, S.A., Dipple, G.M., Power, I.M., Thom, J.M., Anderson, R.G., Raudsepp, M., Gabites, J.E. and Southam, G. (2009) Carbon dioxide fixation within mine wastes of ultramafic-hosted ore deposits: examples from the Clinton Creek and Cassiar chrysotile deposits, Canada. Economic Geology, 104, 95112.CrossRefGoogle Scholar
Supplementary material: File

Nestola et al. supplementary material

CIF

Download Nestola et al. supplementary material(File)
File 603 KB
Supplementary material: File

Nestola et al. supplementary material

Structure factors

Download Nestola et al. supplementary material(File)
File 100.9 KB