Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-10T08:32:00.219Z Has data issue: false hasContentIssue false

Experimental investigation of clogging of fissures and pores in granite

Published online by Cambridge University Press:  05 July 2018

A. C. M. Bourg
Affiliation:
Geochemical Processes Group, Département Gîtes Minéraux, National Geological Survey, BRGM, BP 6009, F-45060 Orléans Cédex, France
P. Oustrière
Affiliation:
Geochemical Processes Group, Département Gîtes Minéraux, National Geological Survey, BRGM, BP 6009, F-45060 Orléans Cédex, France
J. F. Sureau
Affiliation:
Geochemical Processes Group, Département Gîtes Minéraux, National Geological Survey, BRGM, BP 6009, F-45060 Orléans Cédex, France

Abstract

Fluid flow through a fractured granite core and leaching experiments on granite powder (at constant temperatures of 50 and 100°C and during cooling from 100 to 50°C) indicate that the dissolved silica content of the fluids originates from the dissolution of feldspars and phyllosilicates. The dissolution of quartz is not ruled out but it should be a minor phenomenon. The precipitation of quartz may control the dissolved Si content during constant temperature leaching. During cooling from 100 to 50°C chalcedony, alumino-silicates, and chlorite are all capable of precipitation, possibly leading to some clogging or sealing of fissures.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bares, L. (1968) Influence du Broyage sur la Vitesse de Dissolution du Quartz, de la Calcite et d'un Micro-cline Perthitique. Thèse de 3e cycle, Univ. de Toulouse, 89 pp.Google Scholar
Bourg, A. C. M., Oustrière, P., and Sureau, J. F. (1983) Etude expérimentale et théorique du colmatage des fissures en milieu granitique par précipitation de minéraux. Rapport Bureau de Recherches Géologiques et Minières, 83 SGN 860 STO, 57 pp.Google Scholar
Bourrié, G. (1978) Acquisition de la composition chimique des eaux en climat tempéré. Application aux granites des Vosges et de la Margeride, Mém. Sci. Géol. No. 52, Inst. Géologie, Université de Strasbourg, 174 pp.Google Scholar
Charlot, G. (1961) Les Méthodes de la Chimie Analytique: Analyse Quantitative et Minérale. Masson and Co., 1024 pp.Google Scholar
Helgeson, H. C. (1979) In Geochemistry of Hydrothermal Ore Deposits (Barnes, H. L., ed.), 2nd edn, Rinehart and Winston, Inc., 568610.Google Scholar
Iler, R. K. (1979) The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley-Interscience, 866 pp.Google Scholar
Leroy, J. (1971) Les Episyénites non Minéralisées dans le Massif de Granite á Deux Micas de Saint-Sylvestre (Limousin-France). Thèse 3e cycle, Univ. de Nancy, 87 pp.Google Scholar
Moore, D. E., Morrow, C. A., and Byerlee, J. D. (1983) Geochim. Cosmochim. Acta, 47, 445-53.CrossRefGoogle Scholar
Morrow, C., Lockner, D., Moore, D., and Byerlee, J. D. (1981) J. Geophys. Res. 86, 3002-8.CrossRefGoogle Scholar
Reed, M. H. (1982) Geochim. Cosmochim. Acta, 46, 513-28.CrossRefGoogle Scholar
Ribstein, A., and Ledoux, E. (1983) Etude théorique du colmatage des fissures en milieu granitique par précipitation de la silice. Rapport Ecole Normale Supérieure des Mines de Paris, 58 pp.Google Scholar
Sarazin, G. (1978) Geochim. J. 12, 107-13.CrossRefGoogle Scholar
Sarazin, G., Fouillac, C., and Michard, G. (1976) Geochim. Cos mochim. Acta, 40, 1481-6.CrossRefGoogle Scholar
Truesdell, A., and Jones, B. (1974) J. Res. U.S. Geol. Surv. 2, 233-48.Google Scholar