Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T16:26:30.791Z Has data issue: false hasContentIssue false

The evolution of the ore-forming system in the low sulfide horizon of the Noril'sk 1 intrusion, Russia

Published online by Cambridge University Press:  25 July 2019

Nadezhda D. Tolstykh*
Affiliation:
VS Sobolev Institute of Geology and Mineralogy of Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Koptyuga Avenue, Novosibirsk, 630090, Russia Novosibirsk State University, 1 Pirogova street, Novosibirsk, 630090, Russia
Liudmila M. Zhitova
Affiliation:
VS Sobolev Institute of Geology and Mineralogy of Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Koptyuga Avenue, Novosibirsk, 630090, Russia Novosibirsk State University, 1 Pirogova street, Novosibirsk, 630090, Russia
Maria O. Shapovalova
Affiliation:
VS Sobolev Institute of Geology and Mineralogy of Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Koptyuga Avenue, Novosibirsk, 630090, Russia Novosibirsk State University, 1 Pirogova street, Novosibirsk, 630090, Russia
Ivan F. Chayka
Affiliation:
VS Sobolev Institute of Geology and Mineralogy of Siberian Branch of Russian Academy of Sciences (SB RAS), 3 Koptyuga Avenue, Novosibirsk, 630090, Russia Institute of Experimental Mineralogy RAS, 4, Academica Osypyana ul., Chernogolovka, Moscow Region, 142432, Russia
*
*Author for correspondence: Nadezhda D. Tolstykh, Email: [email protected]

Abstract

We present here new data on the low-sulfide mineralisation in the upper endocontact of the Noril'sk 1 intrusion. Twenty four mineral species of platinum-group elements and their solid solutions, as well as numerous unnamed phases, including an Sb analogue of vincentite, As and Sn analogues of mertieite-I and a Sn analogue of mertieite-II have been found. It is shown that the features of the mineral association: (1) the atypical trend of TiO2 and Fe2+ in chromian spinel; (2) the composition of the Pt–Fe alloys with a Fe/Fe + Pt range of 0.26–0.37 (logfO2 ≈ – (9–10); and (3) crystallisation of high-temperature sperrylite from silicate melt (at >800°C and logfS2 < –10.5), which is possible under fO2 of FMQ to FMQ-2 in mafic magma, are due to the reducing conditions of their formation and evolution. Droplet-like inclusions of silicate-oxide minerals in сhromian spinels and sulfides in platinum-group minerals are interpreted to be trapped droplets of co-existing sulfide melt. The captured sulfide melt has evolved in the direction of increasing the fugacity of sulfur: troilite + pentlandite (Fe>Ni) – in sperrylite (paragenesis I) to monoclinic pyrrhotite + pentlandite (Ni≈Fe) + chalcopyrite – in Pt–Fe alloys (paragenesis II). Paragenesis from the sulfide aggregates in the silicate matrix are more fractionated: pyrrhotite + pyrrhotite (Ni>Fe) + chalcopyrite (III) and pyrite + pentlandite (Ni>>Fe) + millerite (IV). Pd arsenides and antimonides crystallised later than sperrylite and isoferroplatinum, as a result of the evolution of a sulfide melt with an increased activity of the element ligands (Te, Sn, Sb and As).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Brian O'Driscoll

References

Arai, S. (1992) Chemistry of chromian spinel in volcanic rocks as a potential guide to magma chemistry. Mineralogical Magazine, 56, 173184.Google Scholar
Bai, L., Barnes, S.J. and Baker, D.R. (2017) Sperrylite saturation in magmatic sulphide melts: Implications for formation of PGE-bearing arsenides and sulfarsenides. American Mineralogist. 102, 966974.Google Scholar
Barkov, A.Y. and Fleet, M.E. (2004) An unusual association of hydrothermal platinum-group minerals from the Imandra Layered Complex, Kola Peninsula, Northwestern Russia. The Canadian Mineralogist, 42, 455467.Google Scholar
Barkov, A., Martin, R., Poirier, G. and Yakovlev, Y. (2000 b) The taimyrite-tatyanaite series and zoning in intermetallic compounds of Pt, Pd, Cu, and Sn from Noril'sk, Siberia, Russia. The Canadian Mineralogist, 38, 599609.Google Scholar
Barkov, A., Martin, R., Poirier, G., Tarkian, M., Pakhomovskii, Y. and Men'shikov, Y. (2000 a) Tatyanaite, a new platinum-group mineral, the Pt analogue of taimyrite, from the Noril'sk complex (northern Siberia, Russia). European Journal of Mineralogy, 12, 391396.Google Scholar
Barnes, S.J. and Kunilov, V.Y. (2000) Spinels and Mg ilmenite from the Noril'sk and Talnakh intrusions and other mafic rocks of the Siberian Flood basalt province. Economic Geology, 95, 17011717.Google Scholar
Barnes, S.J. and Roeder, P.L. (2001) The Range of spinel compositions in terrestrial mafic and ultramafic rocks. Journal of Petrology, 42, 22792302.Google Scholar
Barnes, S.J. and Tang, Z. (1999) Chromian spinels from the Jinchuan Ni-Cu sulphide deposit, Gansu province, People's Republic of China. Economic Geology, 94, 343356.Google Scholar
Barnes, S.J., Cox, R.A. and Zeintec, M.L. (2006) Platinum-group element, gold, silver and base metal distribution in compositionally zoned sulphide droplets-like inclusions from Medvezhy Creek Mine, Noril'sk, Russia. Contributions to Mineralogy and Petrology, 152, 187200.Google Scholar
Barnes, S.J., Godel, B., Gurer, D., Brenan, J.M., Robertson, J. and Paterson, D. (2013) Sulphide-olivine Fe-Ni exchange and the origin of anomalous Ni rich magmatic sulphides. Economic Geology, 108, 19711982.Google Scholar
Barnes, S.J., Le Vaillant, M., Godel, B. and Lesher, C.M. (2019) Droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Noril'sk-Talnakh Ni-Cu-PGE ore-bearing intrusions. Journal Petrology, 60, 269300.Google Scholar
Barton, P.B. and Skinner, B.J. (1967) Sulfide mineral stabilities. Pp. 236333 in: Geochemistry of Hydrothermal Ore Deposits (Barnes, H.L., editor). First Edition, Holt, Rinehart and Winston, New York.Google Scholar
Begizov, V.D., Meshchankina, V.I. and Dubakina, L.S. (1974) New minerals and first discoveries in the USSR. Notes of the All-Union Mineralogical Society (ZVMO), CII(1), 104107 [In Russian].Google Scholar
Cabral, A.R., Tupinamba, M., Lemann, B., Kwitko-Ribeiro, R. and Vymazalova, A. (2008) Arborescent palladiferous gold and empirical Au2Pd and Au3Pd in alluvium from southern Serra do Espinhaco, Brazil. Neues Jahrbuch für Mineralogie, Abhandlunger, 184, 329336.Google Scholar
Cabri, L.J. (2002) The platinum-group minerals. Pp. 13129 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Element (Cabri, L.J., editor). Special volume, 54.Google Scholar
Campbell, I.H., Czamanske, G.K., Fedorenko, V.A., Hill, R.I. and Stepanov, V. (1992) Synchronism of the Siberian traps and the Permian-Triassic boundary. Science, 255, 17601763.Google Scholar
Canali, A.C., Brenan, J.M. and Sullivan, N.A. (2017) Solubility of platinum-arsenide melt and sperrylite in synthetic basalt at 0.1 MPa and 1200°C with implications for arsenic sreciation and platinum sequestration in mafic igneous systems. Geochimica et Cocmochimica Asta, 216, 153168.Google Scholar
Cawthorn, R.G., de Wet, M., Hatton, C.J. and Cassidy, L.F. (1991) Ti-rich chromite from the Mount Ayliff intrusion, Transkei: Further evidence for high Ti tholeiitic magma. American Mineralogist, 76, 561573.Google Scholar
Chayka, I.F., Kamenetsky, V.S., Izokh, A.E., Zhitova, L.M., Tolstykh, N.D., Yakich, T.Yu. and Lobastov, B.M. (2019) Petrological conundrums of chromite-PGE-enriched rocks of Norilsk-1 intrusion: evidence from Cr-spinel hosted inclusions. Pp. 6667 in: Magmatism of the Earth and Related Strategic Metal Deposits. Proceedings of International Conference, Saint Petersburg, Russia.Google Scholar
Craig, J.R. and Kullerud, G. (1969) Phase relation in the Fe–Ni–Cu–S system and their application to magmatic ore deposits. Economic Geology Monography, 4, 344358.Google Scholar
Czamanske, G.K., Kunilov, V.E., Zientek, M.L., Cabri, L.J., Likhachev, A.P., Calk, L.C. and Oscarson, R.L. (1992) A proton-microprobe study of magmatic sulphide ores from the Noril'sk-Talnakh district, Siberia. The Canadian Mineralogist, 30, 249287.Google Scholar
Distler, V.V., Sluzhenikin, S.F., Laputina, I.P. and Kulagov, E.A. (1996) Quenched sulphide solid solutions in Noril'sk ores. Geology of Ore Deposits, 38, 4153.Google Scholar
Distler, V.V., Genkin, A.D., Filimonova, A.A., Khitrov, V.G. and Laputina, I.P. (1975) Zonality of copper-nickel ores of the Talnakh and Oktyabrskoye deposits. Geology of Ore Deposits, 2, 1627 [in Russian].Google Scholar
Distler, V.V., Grokhovskaya, T.L. and Evstigneeva, T.L. (1988) Petrology of Magmatic Sulphide Ore Formation. Publishing House Science, Moscow [in Russian].Google Scholar
Distler, V.V., Malevsky, A.Y. and Laputina, I.P. (1977) Distribution of PGE between pyrrhotite and pentlandite during crystallization of sulphide melt. Geochemistry (Geokhimiya), 11, 16461659 [in Russian].Google Scholar
Distler, V.V., Nikol'skaya, N.N. and Yeshkova, Z.A. (1976) Elements of the platinum group in the traps of the Noril'sk region. Pp. 110128 in: Geochemistry of Ore-Forming Elements of Basic and Ultrabasic Rocks (Rekharsky, V.I., editor). Publishing House: Science, Moscow [in Russian].Google Scholar
Distler, V.V., Sluzhenikin, S.F., Krivolutskaya, N.A., Turovtsev, D.M., Golovanova, T.A., Mokhov, A.V., Cabri, L., Knauf, V.V. and Oleshkevich, O.I. (1999) Platinum ores of the Noril'sk layered intrusions: magmatic and fluid concentration of noble metals. Geology of Ore Deposits, 41, 214237.Google Scholar
Dodin, D.A., Sluzhenikin, S.F. and Bogomolov, M.A. (2009) Ores and Minerals of the Noril'sk Region. Publishing house “Polar Star”, Moscow [in Russian].Google Scholar
Duran, C.J., Barnes, S-J., Pleše, P., Kudra Plešek, M., Zeintec, M.L. and Pagé, P. (2017) Fractional crystallization-induced variations in sulphidesulphides from the Noril'sk-Talnakh mining district (polar Siberia, Russia). Ore Geology Reviews, 90, 326351.Google Scholar
Dyuzhikov, O.A., Distler, V.V., Strunin, B.M., Mkrtychyan, L.K., Sherman, M.L., Sluzhenikin, S.F. and Lurye, L.M. (1988) Geology and Ore Content of the Noril'sk Region. Publishing house Nedra, Moscow [in Russian].Google Scholar
Ehlers, E.R. (1972) The Interpretation of Geological Phase Diagrams. W. H. Freeman and Co., Ltd. San Francisco.Google Scholar
Emelianenko, PF and Yakovleva, EB (1985) Petrography of Igneous and Metamorphic Rocks. Publishing House MGU, Moskow [in Russian]Google Scholar
Evstigneeva, T.L. and Genkin, A.D. (1983) Cabriite Pd2SnCu, a new species in the mineral group of palladium, tin and copper compounds. The Canadian Mineralogist, 21, 481487.Google Scholar
Evstigneeva, T.L. and Trubkin, N.V. (2006) New data on compounds in the Pd2As–Ni2As system. Electronic scientific and information magazine “Newsletter of the Earth Sciences Division”, 1(24), ISSN [in Russian].Google Scholar
Genkin, A.D. and Evstigneeva, T.L. (1986) Associations of platinum-group minerals of the Noril'sk Copper-Nickel sulphide ores. Economic Geology, 81, 12031212.Google Scholar
Genkin, A.D., Distler, V.V. and Laputina, I.P. (1979) Chromite mineralization of differentiated trap intrusions and conditions for its formation. Pp. 105126 in: Formation Conditions of Magmatic Ore Deposits, Nauka, Moscow [in Russian].Google Scholar
Genkin, A.D., Distler, V.V., Gladyshev, D.G., Filimonova, A.A., Evstigneeva, T.L., Kovalenker, V.A., Laputina, I.P., Smirnov, A.V. and Grokhovskaya, T.L. (1981) Sulphide Copper-Nickel Ores of the Noril'sk Deposits. Publishing House Science, Moscow [in Russian].Google Scholar
Genkin, A.D., Dudykina, A.S. and Teleshova, L.R. (1970) Some data on the composition of rock-forming pyroxene and olivine of the Noril'sk-I gabbro-dolerite intrusion. Pp. 4056 in: Minerals of Basites in Connection with Petrogenesis. Publishing House: Science, Moscow [in Russian].Google Scholar
Genkin, A.D., Evstigneeva, T.L., Troneva, N.V. and Vyalsov, L.N. (1969) Polarite Pd(Pb,Bi) – a new mineral from copper-nickel sulphide ores. Notes of the All-Union Mineralogical Society (ZVMO). XCVIII(6), 708715 [in Russian].Google Scholar
Genkin, AD., Murav'eva, I.V. and Troneva, N.V. (1966) Zvyagintsevite – a natural intermetallic compound of palladium, platinum, lead and tin. Geology of Ore Deposits, 3, 94100 [in Russian].Google Scholar
Godlevsky, M.N. (1959) Traps and Ore-Bearing Intrusions of the Noril'sk Region. Publishing house Gosgeoltekhizdat, Moscow [in Russian].Google Scholar
Johan, Z., Slansku, E. and Kelly, D.A. (2000) Platinum nuggets from the Kompiam area, Enda Province, Papua New Guinea: evidence for an Alaskan-type complex. Mineralogy and Petrology, 68, 159176.Google Scholar
Johan, Z., Slansky, E. and Ohnenstetter, M. (1991) Isoferroplatinum nuggets from Milverton (Fifield, N.S.W., Australia): a contribution to the origin of PGE mineralization in Alaskan-type complexes. Comptes Rendus de I'Académie des Sciences Paris, 312, 5560.Google Scholar
Kamenetsky, V.S., Crawford, A.J. and Meffre, S. (2001). Factors controlling chemistry of magmatic spinel: an empirical study of associated olivine, Cr-spinel and melt inclusions from primitive rocks. Journal of Petrology, 42, 655671.Google Scholar
Kamo, S.L., Czamanske, G.K. and Krough, T.E. (1996) A minimum U-Pb age for Siberian flood-basalt volcanism. Geochimica et Cosmochimica Acta, 60, 35053511.Google Scholar
Kaneda, H., Takenouchi, S. and Shoji, T. (1986) Stability of pentlandite in the Fe–NiCo–S system. Mineralium Deposita, 21, 169180.Google Scholar
Kitakaze, A., Mzchida, T. and Komatsu, R. (2016) Phase relations in the Fe-Ni-S system from 875 to 650°C. The Canadian Mineralogist, 54, 11751186.Google Scholar
Kolonin, G.R., Orsoev, D.A., Sinyakova, E.F. and Kislov, E.V. (2000) Using the ratio Ni:Fe in pentlandite to assess the volatility in the formation of sulphur-containing PGE sulphide mineralization of the Yoko-Dovyren massif. Reports of the Russian Academy of Sciences (Doklady RAN), 370, 8791 [in Russian].Google Scholar
Komarova, M.Z., Kozyrev, S.M., Siminov, O.N. and Lulko, V.A. (2002) The PGE mineralization of disseminated sulphide ores of the Noril'sk-Taimyr region. Pp. 547568 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). Special volume 54.Google Scholar
Korolyuk, V.N., Usova, L.V. and Nigmatulina, E.N. (2009) On the accuracy of determining composition of principal rock-forming silicates and oxides with a Jeol JXA-8100 electron microprobe. Journal of Analytical Chemistry, 64, 10701074.Google Scholar
Kosyakov, V.I., Sinyakova, E.F. and Shestakov, V.A. (2003) The dependence of fugacity of sulphur from the composition of phase associations of Fe–FeS–NiS–Ni at 873°K. Geochemistry (Geokhimiya), 7, 730740 [in Russian].Google Scholar
Kovalenker, V.A., Genkin, A.D., Evstigneeva, T.L. and Laputina, I.P. (1974) Telargpalite, a new mineral of palladium, silver and tellurium from the copper-nickel ores of the Oktyabrskoye deposit. Notes of the All-Union Mineralogical Society (ZVMO), 103, 595600 [in Russian].Google Scholar
Kovalenker, V.A., Laputina, I.P., Vyalsov, L.N., Genkin, A.D. and Evstigneeva, T.L. (1972) Minerals of tellurium in sulphide copper-nickel ores of Talnakh and Oktyabrskoye deposits (Noril'sk region). Proceedings of the USSR Academy of Sciences, Geological Series, 1, 8597 [in Russian].Google Scholar
Kozyrev, S.M., Komarova, M.Z., Emelina, L.N., Oleshkevich, O.I., Yakovleva, O.A., Lyalinov, D.V. and Maximov, V.I. (2002) The mineralogy and behavior of PGM during processing of the Noril'sk-Talnakh PGE-Cu-Ni ores. Pp. 757791 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). Special volume 54.Google Scholar
Krivolutskaya, N.A. (2014) Evolution of Trap Magmatism and Pt-Cu-Ni mineralization in the Noril'sk region. Publishing Association of Scientific Publications KMK, Moscow [in Russian].Google Scholar
Kucha, H. (1984) Palladium minerals in the Zechstein copper deposits in Poland. Chemie der Erde, 43, 2743.Google Scholar
Kullerud, G. (1962) Thermal stability of pentlandite. The Canadian Mineralogist, 7, 353366.Google Scholar
Latypov, R.M. (2002) Phase equilibria constrains on relations of ore-bearing intrusions with flood basalts in the Noril'sk region, Russia. Contributions to Mineralogy and Petrology, 143, 438449.Google Scholar
Lavrent'yev, Yu. G., Karmanov, N.S. and Usova, L.V. (2015 a) Electron-microprobe determination of mineral compositions: microprobe or scanning-electron microscope? Russian Geology and Geophysics, 56, 11541161.Google Scholar
Lavrent'yev, Yu.G., Korolyuk, V.N., Usova, L.V. and Nigmatulina, E.N. (2015 b) Electron probe microanalysis of rock-forming minerals with a JXA-8100 electron probe microanalyzer. Russian Geology and Geophysics, 56, 14281436.Google Scholar
Likhachev, A.P. (1996) Kharaelakhsky intrusion and its platinum-copper-nickel ores. Ores and Metals, 3, 4862 [in Russian].Google Scholar
Likhachev, A.P. (2006) Platinum-Copper-Nickel and Platinum Deposits. Publishing House Eslan, Moscow [in Russian].Google Scholar
Likhachev, A.P. and Kukoev, V.A. (1973) About melting and phase relations in sulphide, silicate and sulphide-silicate systems. Geology of Ore Deposits, 5, 3245 [in Russian].Google Scholar
Maier, W., Rasmussen, B., Fletcher, I., Godel, B., Barnes, S.J., Fisher, L., and Yang, S. (2015) Petrogenesis of the ~2.77 Ga Monts de Cristal complex, Gabon: Evidence for direct precipitation of Pt-arsenides from basaltic magma. Journal of Petrology, 56, 12851308.Google Scholar
Makovicky, E. (2002) Ternary and Quaternary Phase systems with PGE. Pp. 131175 in: The Geology, Geochemistry, Mineralogy and Mineral Beneficiation of Platinum-Group Elements (Cabri, L.J., editor). Special volume 54.Google Scholar
Malitch, K.N., Badanina, I.Yu., Belousova, E.A. and Tuganova, E.V. (2012) Results of U-Pb dating of zircon and baddeleyite from the Noril'sk-1 ultramafic-mafic intrusion (Russia). Russian Geology and Geophysics, 53, 123130.Google Scholar
Malitch, K.N., Latypov, R.M., Badanina, I.Yu. and Sluzhenikin, S.F. (2014) Insights into ore genesis of Ni–Cu–PGE sulphide deposits of the Noril'sk Province (Russia): evidence from copper and sulfur isotopes. Lithos, 204, 172187.Google Scholar
Naldrett, A.J. (2004) Magmatic Sulphide Deposits: Geology, Geochemistry and Exploration. Springer, Berlin/Heidelberg/New York.Google Scholar
Okamoto, H. and Massalski, T.B. (1985) The Au–Pt (Gold-Platinum) system. Journal of Phase Equilibria, 6, 4656.Google Scholar
Peregoedova, A.V. (1999) Physical and chemical behavior of Pt and Pd during crystallization of Fe, Ni, Cu-containing sulphide melts, and in subsequent subsolidus transformations. Author. dissertation for a candidate of geological and mineralogical sciences, Novosibirsk [in Russian].Google Scholar
Raub, C.J. and Webb, J. (1963) An investigation of the phase-diagram palladium-arsenic in connection with superconductivity. Less-Common Metals, 5, 271277.Google Scholar
Razin, L.V., Dubakina, L.S. and Dubinchuk, V.T. (1976) Rhombic palladium, copper and platinum stannide from copper-nickel sulphide ores of Noril'sk-type deposits. Notes of the All-Union Mineralogical Society (ZVMO), 206213 [in Russian].Google Scholar
Reichow, M.K., Saunders, A.D., White, R.V., Al'Mukhamedov, A.I. and Medvedev, A.Ya. (2005) Geochemistry and petrogenesis of basalts from the West Siberian Basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos, 79, 425452.Google Scholar
Roeder, P.L. and Campbell, I.H. (1985) The effect of postcumulus reactions on compositions of chrome-spinels from the Jimberlana Intrusion. Journal of Petrology, 26, 763786.Google Scholar
Roeder, P.L. and Jamieson, H.E. (1992) Composition of chromite and co-existing Pt–Fe alloy at magmatic temperatures. Australian Journal Earth Sciences, 39, 419426.Google Scholar
Ryabov, V.V. (1984) On the composition of the upper contact zones of the Noril'sk intrusions bearing a rich chromite mineralization. Pp. 124142 in: Petrochemistry. Criteria of Ore Mineralization of Magmatic Complexes. Publishing House IGG SB AS USSR, Novosibirsk [in Russian].Google Scholar
Ryabov, V.V. (1989) Segregation in Natural Glass (for example, traps). Nauka, Novosibirsk [in Russian].Google Scholar
Ryabov, V.V. and Lapkovsky, A.A. (2010) Native iron (-platinum) ores from the Siberian Platform trap intrusions. Australian Journal of Earth Science. 57, 707736.Google Scholar
Ryabov, V.V., Shevko, A.Ya. and Gora, M.P. (2001) Magmatic formations in Noril'sk region. Volume 1. Trapp Petrology. Second edition, corrected, Nonparel Rublishers, Novosibirsk, RussiaGoogle Scholar
Ryabov, V.V., Shevko, A.Ya. and Gora, M.P. (2014) Trap Magmatism and Ore Formation in the Siberian Noril'sk Region. Trap Petrology, 1. Springer, [in Russian].Google Scholar
Ryabov, V.V., Shevko, A.Ya., Simonov, O.N. and Anoshin, G.N. (1996) Composition of platinum-bearing Cr-rich skarns of the Talnakh (Noril'sk region). Geology and Geophysics, 37, 6075 [in Russian].Google Scholar
Scowen, P.A., Roeder, P.L. and Helz, R.T. (1991) Re-equilibration of chromite within Kilauea Iki lava lake, Hawaii. Contributions to Mineralogy and Petrology, 107, 820.Google Scholar
Sluzhenikin, S.F. (2011) Platinum-copper-nikel and platinum ores of Noril'sk region and their ore mineralization. Russian Journal of General Chemistry, 81, 12881301.Google Scholar
Sluzhenikin, S.F. and Mokhov, A.V. (2007) Minerals of the PdBi–PdTe–PdSb–PdPb system in Pt–Cu–Ni and Pt ores of the Noril'sk region. Pp. 119121 in: The Annual Meeting of the RMS 8–10 October. IGEM RAS, Moscow [in Russian].Google Scholar
Sluzhenikin, S.F. and Mokhov, A.V. (2008) Natural iron-platinum, palladium-platinum and palladium-copper alloys in the platinum-copper-nickel and platinum ores of the Noril'sk deposit. Pp. 346347 in: Problems of Geology of Ore Deposits, Mineralogy, Petrology and Geochemistry. Proceedings of the Scientific Conference. IGEM RAS. Moscow [in Russian].Google Scholar
Sluzhenikin, S.F. and Mokhov, A.V. (2015) Gold and silver in PGE–Cu–Ni and PGE ores of the Noril'sk deposits, Russia. Mineralium Deposita, 50, 465492.Google Scholar
Sluzhenikin, S.F., Distler, B.B. and Grigoryeva, A.V. (2016) Low-sulphide platinum ores of the Noril'sk region – promising sources of precious metals. Arctic: Ecology and Economics, 4, 3245 [in Russian].Google Scholar
Sluzhenikin, S.F., Distler, V. and Grigoryeva, A. (2013) Petrology of low-sulphide PGE ores of the Noril'sk region. Pp. 10581060 in: Mineral Deposit Research for a High-Tech World. (Barnes, H.L., editor). Proceedings 3. 12th SGA Biennial Meeting 12–15 August 2013, Uppsala, Sweden.Google Scholar
Sluzhenikin, S.F., Distler, V.V., Dyuzhikov, O.A., Kravtsov, V.F., Kunilov, B.E., Laputina, I.P. and Turovtsev, D.M. (1994) Low-sulphide platinum mineralization in the Noril'sk differentiated intrusions. Geology of Ore Deposits, 36, 195217 [in Russian].Google Scholar
Sluzhenikin, S.F., Krivolutskaya, N.A., Rad'ko, V.A., Malitch, K.N., Distler, V.V. and Fedorenko, V.A. (2014) Ultramafic-mafic intrusions, volcanic rocks and PGE-Cu-Ni sulphide deposits of the Noril'sk Province, Polar Siberia (Simonov, O.N., editor). Field trip guidebook. IGG UB RAS, Yekaterinburg.Google Scholar
Smirnov, M.F. (1966) The Structure of the Noril'sk Nickel-Bearing Intrusions and Sulphide Ores. Publishing house Nedra, Moscow [in Russian].Google Scholar
Sobolev, A.V., Krivolutskaya, N.A. and Kuz'min, D.V. (2009) Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology, 17, 253286.Google Scholar
Spiridonov, E.M. (2010) Ore-magmatic systems of the Noril'sk ore field. Russian Geology and Geophysics, 51, 10591077.Google Scholar
Tolstykh, N., Kozlov, A. and Telegin, Yu. (2015) Platinum mineralization of the Svetly Bor and Nizhny Tagil intrusions, Ural Platinum Belt. Ore Geology Reviews, 67, 34243.Google Scholar
Tolstykh, N.D., Shvedov, G.I., Polonyankin, A.A. and Zemlyansky, S.A. (2017) Mineralogical and geochemical feature of the disseminated ores of the southern part of the Noril'sk 1 deposit. IOP Conference Series: Earth and Environmental Science, 110, 012021.Google Scholar
Turovtsev, D.M. (2002) Contact Metamorphism of the Noril'sk Intrusions. Publishing house Nauchny Mir, Moscow [in Russian].Google Scholar
Urvantsev, N.N. (1971) Geological basis for the rocks classification of the Siberian platform trap formation. Pp. 522 in: Geology and Minerals of the Noril'sk Region. Publishing House NIIGA, Leningrad [in Russian].Google Scholar
Vaughan, D.J. and Craig, J.R. (1978) Mineral Chemistry of Metal Sulphides. Cambridge University Press, Cambridge, UK.Google Scholar
Zolotukhin, V.V. (1964) The Main Regularities of Prototectonics and Questions of Trap Intrusions Formation. Publishing House Science, Moscow [in Russian].Google Scholar
Supplementary material: File

Tolstykh et al. supplementary material

Tolstykh et al. supplementary material

Download Tolstykh et al. supplementary material(File)
File 65.5 KB