Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T07:19:22.181Z Has data issue: false hasContentIssue false

Empirical ferric iron corrections: necessity, assumptions, and effects on selected geothermobarometers

Published online by Cambridge University Press:  05 July 2018

John C. Schumacher*
Affiliation:
Mineralogisch-Petrographisches Institut, Olshausenstraβe 40, D-2300 Kiel, F.R. Germany

Abstract

The ferromagnesian silicate minerals, such as garnets, pyroxenes, micas, and amphiboles, appear in a variety of geothermometers and geobarometers. Where complete chemical analyses are available and regardless of bulk composition (metamorphosed pelitic or mafic), the aforementioned minerals commonly contain ferric iron. In mineral analyses using the electron microprobe, ferric and ferrous iron are not distinguished, and all the iron is treated as FeO. In ferric Fe-bearing minerals, this treatment results in (1) low analytical sums and (2) excess cations in the mineral formulae. Assuming ideal stoichiometry (ideal formula cations and oxygens) allows direct ferric estimates in garnets and pyroxenes; amphiboles require additional assumptions concerning site occupancies, and, for micas, no acceptable constraint exists for a ferric estimate. Based on ferric iron determinations for some metamorphic ferromagnesian silicates, the proportion of ferric to total iron increases at higher XMg values. The influence of ferric estimates on T and P calculations depends on the model used and on the extent the ferric estimate alters the relative proportions of end-members. Several examples suggest that, in general, if ferric estimates (or determinations) are made, they should be made for all the relevant minerals.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Deer, W. A., Howie, R. A., and Zussman, J. (1962) Rock-forming Minerals, Vol. 3. Sheet Silicates. Longman Group Limited, London, 270 pp.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1966) An Introduction to the Rock-forming Minerals. Longman Group Limited, London, 528 pp.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1978) Rock-forming Minerals, Vol. 2A, Single-chain Silicates. Longman Group Limited, London, 668 pp.Google Scholar
Deer, W. A., Howie, R. A., and Zussman, J. (1982) Ibid. Vol. 1A, Orthosilicates. Longman Group Limited, London 919 pp.Google Scholar
Droop, G. T. R. (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analysis, using stoichiometric criteria. Mineral. Mag., 51. 431–7.CrossRefGoogle Scholar
Dyar, M. D., Grover, T. W., Rice, J. M., and Guidotti, C. V. (1987) Presence of ferric iron and octahedral ferrous ordering in biotites from pelitic schists: implications for garnet-biotite geothermometry. Geol. Soc. Amer. Abstr. with Programs, 19, 650.Google Scholar
Ferry, J. M. and Spear, F. S. (1978) Experimental calibration of the partitioning of Fe and Mg between biotite and garnet. Contrib. Mineral. Petrol., 66, 113–7.CrossRefGoogle Scholar
Ghent, E. D. and Stout, M. Z. (1986) Garnet-hornblende thermometry, CaMgSi2O6 activity, and the minimum pressure limits of metamorphism for garnet amphibolites. J. Geol., 94, 736–43.CrossRefGoogle Scholar
Guidotti, C. V. (1984) Micas in metamorphic rocks. In Micas (Bailey, S. W., ed.), Mineral. Soc. Amer. Reviews in Mineralogy, 13, 357467.Google Scholar
Hawthorne, F. C. (1983) The crystal chemistry of amphiboles. Can. Mineral., 21, 173480.Google Scholar
Humphreys, H. C. and Van Bever Donker, J. M. (1990) Early Namaqua low-pressure metamorphism: deformation and porphyroblast growth in the Zoovoorby staurolite schist, South Africa. J. Metamorphic Geol., 8, 159–70.CrossRefGoogle Scholar
Kohn, M. J. and Spear, F. S. (1989) Empirical calibration of geobarometers for the assemblage garnet + hornblende + plagioclase + quartz. Amer. Mineral., 74, 7784.Google Scholar
Leake, B. E. (1968) A catalog of analyzed califerous and sub-calciferous amphiboles together with their nomenclature and associated minerals. Geol. Soc. Amer. Spec. Paper, 98, 210 pp.Google Scholar
Leake, B. E. (1978) Nomenclature of amphiboles. Amer. Mineral., 63, 1023–53.Google Scholar
Leake, B. E. and Hey, M. H. (1979) Addendum to the nomenclature of amphiboles. Mineral. Mag., 42, 561–3.Google Scholar
Newton, R. C. and Haselton, H. T. (1981) Thermodynamics of the garnet-plagioclase–A12SiO5-quartz geobarometer. In Thermodynamics of Minerals and Melts (Newton, R. C., Navotsky, A., and Woods, B. J., eds.) Springer-Verlag, New York, p. 129–45.CrossRefGoogle Scholar
Robinson, P., Spear, F. S., Schumacher, J. C., Laird, J., Klein, C., Evans, B. W., and Doolan, B. L. (1982) Phase relations of metamorphic amphiboles: Natural occurrence and theory. In Amphiboles: Petrology and Experimental Phase relations (Veblen, D. R. and Ribbe, P. H., eds.), Rev. Mineralogy, 9B, 1227.Google Scholar
Schumacher, R. (1986) Petrology and geochemistry of epidote and clinopyroxene-bearing amphibolites and calc-silicate rocks from central Massachusetts U.S.A. Ph.D. dissertation, University of Bonn, 272 pp.Google Scholar
Sevigny, J. H. and Ghent, E. D. (1989) Pressure, temperature and fluid composition during amphibolite facies metamorphism of graphite metapelites, Howard Ridge, British Columbia. J. Metamorphic Geol., 7, 497505.CrossRefGoogle Scholar
Spear, F. S. and Kimball, K. (1984) RECAMPA FORTRAN IV program for estimating Fe3+ contents in amphiboles. Computers Geosci., 10, 317–25.CrossRefGoogle Scholar
Yardley, B. W. D., Leake, B. E., and Farrow, C. M. (1980) The metamorphism of Fe-rich pelites from Connemara, Ireland. J. Petrol., 21, 365–99.CrossRefGoogle Scholar