Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T07:56:35.782Z Has data issue: false hasContentIssue false

Embreyite: structure determination, chemical formula and comparative crystal chemistry

Published online by Cambridge University Press:  28 February 2018

Vadim M. Kovrugin
Affiliation:
Department of Crystallography, St Petersburg State University, University emb. 7/9, 199034 St Petersburg, Russia Laboratoire de Réactivité et Chimie des Solides, UMR 7314 CNRS, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens, France
Oleg I. Siidra*
Affiliation:
Department of Crystallography, St Petersburg State University, University emb. 7/9, 199034 St Petersburg, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, 184200, Murmansk Region, Russia
Igor V. Pekov
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Nikita V. Chukanov
Affiliation:
Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia
Dmitry A. Khanin
Affiliation:
Faculty of Geology, Moscow State University, Vorobievy Gory, 119991 Moscow, Russia
Atali A. Agakhanov
Affiliation:
Fersman Mineralogical Museum of the Russian Academy of Sciences, Leninsky Prospekt 18-2, 119071 Moscow, Russia
*

Abstract

Embreyite from the Berezovskoe, Urals, Russia, was studied by the means of powder X-ray diffraction (XRD), single-crystal XRD, infrared spectroscopy and microprobe analysis. The empirical formula of embreyite obtained on the basis of microprobe analysis is Pb1.29Cu0.07Cr0.52P0.43O4 (without taking into account the presence of H2O). An examination of single-crystal XRD frames of the tested crystals cut from embreyite intergrowths revealed split reflection spots of weak intensities, even after a long exposure time. The crystal structure of embreyite (monoclinic, C2/m, a = 9.802(16), b = 5.603(9), c = 7.649(12) Å, β = 114.85(3)o and V = 381.2(11) Å3) has been solved by direct methods and refined to R1 = 0.050 for 318 unique observed reflections. The powder XRD patterns of the holotype embreyite and the fresh material studied are close in both d values and the intensities match the pattern calculated from the structural single-crystal XRD data. The unit-cell parameters were re-calculated for the holotype sample using a new cell setting and corresponding hkl indices. The crystal structure of embreyite is based on layers formed by corner-sharing mixed chromate-phosphate tetrahedra and PbO6 distorted octahedra. The interlayer space is filled by disordered Pb2+ and Cu2+ cations. Generally, the crystal structure of embreyite can be referred to the structural type of palmierite. {Pb[(Cr,P)O4]2]} layers in embreyite are similar in topology to those in yavapaiite-type compounds. The general formula of embreyite can be represented as (Pbx$M_y^{2 +} $1–x–y)2{Pb[(Cr,P)O4]2}(H2O)n, where M2+ = Cu and Zn and 0.5 ≤ x + y ≤ 1, or, in the simplified form: (Pb,Cu,□)2{Pb[(Cr,P)O4]2}(H2O)n. The simplified formula of embreyite is similar in stoichiometry to vauquelinite and may explain the existence of the solid-solution series. The determination of the crystal structure of embreyite may also help to resolve the crystal chemical nature of cassedanneite. The XRD pattern of cassedanneite contains a distinct reflection with d = 13.9 Å, forbidden for the embreyite unit cell. This feature may indicate the doubling of the c unit-cell parameter of cassedanneite in comparison with embreyite. We assume that cassedanneite has structural similarity to embreyite with, presumably, a disordered distribution of Cr and V.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Juraj Majzlan

References

Adib, D. and Ottemann, J. (1970) Some new lead oxide minerals and murdochite from T. Khuni Mine, Anarak, Iran. Mineralium Deposita, 5, 8693.Google Scholar
Aktas, O., Salje, E.K.H. and Carpenter, M.A. (2013) Resonant ultrasonic spectroscopy and resonant piezoelectric spectroscopy in ferroelastic lead phosphate, Pb3(PO4)2. Journal of Physics: Condensed Matter, 25, 465401.Google Scholar
Alkemper, J. and Fuess, H. (1998) The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18: new examples for glaserite related structures. Zeitschrift für Kristallographie – Crystalline Materials, 213, 282287.CrossRefGoogle Scholar
Barbier, J. and Maxin, D. (1995) Phase transformation in Pb4(PO4)2CrO4. Journal of Solid State Chemistry, 116, 179184.Google Scholar
Bariand, P. and Herpin, P. (1963) Une nouvelle espèce minérale: l'iranite, chromate hydraté de plomb. Bulletin de la Societe Francaise Mineralogie et de Cristallographie, 86, 113135.Google Scholar
Bindi, L. and Menchetti, S. (2005) Structural changes accompanying the phase transformation between leadhillite and susannite: A structural study by means of in situ high-temperature single-crystal X-ray diffraction. American Mineralogist, 90, 16411647.Google Scholar
Bismayer, U. and Salje, E. (1981) Ferroelastic phases in Pb3(PO4)2–Pb3(AsO4)2; X-ray and optical experiments. Acta Crystallographica, A37, 145153.CrossRefGoogle Scholar
Cesbron, F. and Williams, S.A. (1980) Iranite-hémihédrite, bellite, phoenicochroite, vauquelinite et fornacite: synthèse et nouvelles données. Bulletin de Minéralogie, 103, 469477.Google Scholar
Cesbron, F., Giraud, R., Pillard, F. and Poullen, J.-F. (1988) La cassedannéite, nouveau chromo-vanadate de plomb de Beresovsk (Oural). Comptes Rendus de l'Académie des Sciences – Series II, 306, 125127.Google Scholar
Christy, A. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 3349.Google Scholar
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer Verlag, Cham, Switzerland.Google Scholar
Cocco, G., Fanfani, L. and Zanazzi, P.F. (1967) The crystal structure of fornacite. Zeitschrift für Kristallographie, 124, 385397.Google Scholar
Cooper, M.A. and Hawthorne, F.C. (1994) The crystal structure of wherryite, Pb7Cu2(SO4)4(SiO4)2(OH)2, a mixed sulfate-silicate with [[6] M(TO 4)2ϕ] chains. The Canadian Mineralogist, 32, 373380.Google Scholar
Cooper, M.A., Ball, N.A., Hawthorne, F.C., Paar, W.H., Roberts, A.C. and Moffatt, E. (2011) Georgerobinsonite, Pb4(CrO4)2(OH)2FCl, a new chromate mineral from the Mammoth – St. Anthony mine, Tiger, Pinal County, Arizona: description and crystal structure. The Canadian Mineralogist, 49, 865876.Google Scholar
Cooper, M.A., Abdu, Y.A., Hawthorne, F.C. and Kampf, A.R. (2016) The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices. Mineralogical Magazine, 80, 869875.CrossRefGoogle Scholar
Effenberger, H. and Pertlik, F. (1986) Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4 (crocoite), and PbSeO4. Zeitschrift für Kristallographie, 176, 7583.Google Scholar
Fanfani, L. and Zanazzi, P.F. (1968) The crystal structure of vauquelinite and the relationships to fornacite. Zeitschrift für Kristallographie – Crystalline Materials, 126, 433443.Google Scholar
Fettes, D. and Desmons, J. (2007) Metamorphic rocks – A Classification and Glossary of Terms. Cambridge University Press, UK.Google Scholar
Gao, J., Song, L., Hu, X. and Zhang, D. (2011) A buetschliite-type rare-earth borate, KBaY(BO3)2. Solid State Sciences, 13, 115119.Google Scholar
Hartl, K. and Braungart, R. (1978 a) Strontiumchromat(V, VI), Sr2.670.33(CrO4)1.33(CrO4)0.67, eine Hochtemperaturphase mit Defekt-Bariumphosphat-Struktur. Zeitschrift für Naturforschung, B33, 952953 [in German].Google Scholar
Hartl, K. and Braungart, R. (1978 b) Strontiumphosphat-chromat(VI), Sr3(PO4)2·SrCrO4, eine dimorphe Hochtemperaturverbindung. Zeitschrift für Naturforschung, B33, 954955 [in German].Google Scholar
Hesse, K.-F. and Simons, B. (1982) Crystal structure of synthetic K2Mg(CO3)2. Zeitschrift für Kristallographie, 161, 289292.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S. and Spratt, J. (2012 a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite. American Mineralogist, 97, 212219.Google Scholar
Kampf, A.R., Mills, S.J., Housley, R.M., Bottrill, R.S. and Kolitsch, U. (2012 b) Reynoldsite, Pb2${\rm Mn}_{\rm 2}^{{\rm 4 +}} $O5(CrO4), a new phyllomanganate-chromate from the Blue Bell claims, California and the Red Lead mine, Tasmania. American Mineralogist, 97, 11871192.Google Scholar
Khanin, D.A. and Pekov, I.V. (2016 a) Minerals with brackebuschite-like structures: a novel solid-solution system involving Cr6+ and V5+. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 145, 96112 [in Russian].Google Scholar
Khanin, D.A. and Pekov, I.V. (2016 b) New data on cassedanneite. International Conference Dedicated to 300-year Anniversary of the Fersman Mineralogical Museum. Moscow, pp. 188189 [in Russian].Google Scholar
Khanin, D.A., Pekov, I.V., Pakunova, A.V., Ekimenkova, I.A. and Yapaskurt, V.O. (2015) Natural system of fornacite–vauquelinite–embreyite solid solutions and variations in the chemical composition of these minerals from occurrences of the Urals. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 144, 3660 [in Russian].Google Scholar
Kleymenov, D.A., Pekov, I.V., Erokhin, Y.V. and Chukanov, N.V. (2003) New data on embreyite from the oxidation zone of the Berezovskoye gold deposit. Pp. 171177 in: Mineralogiya Urala-2003. Miass, Russia [in Russian].Google Scholar
Kovrugin, V.M., Colmont, M., Terryn, C., Colis, S., Siidra, O.I., Krivovichev, S.V. and Mentré, O. (2015) pH-Controlled pathway and systematic hydrothermal phase diagram for elaboration of synthetic lead nickel selenites. Inorganic Chemistry, 54, 24252434.Google Scholar
Ksenofontov, D.A., Kabalov, Y.K., Pekov, I.V., Zubkova, N.V., Ekimenkova, I.A. and Pushcharovskii, D.Y. (2014) Refinement of the crystal structure of fornacite using the Rietveld method. Doklady Earth Sciences, 456, 520523.Google Scholar
Lazoryak, B.I. (1996) Design of inorganic compounds with tetrahedral anions. Russian Chemical Reviews, 65, 287305.Google Scholar
Leclaire, A., Monier, J.C. and Raveau, B. (1984) A molybdosilicophosphate with an intersecting-tunnel structure which exhibits ion-exchange properties, AMo3P5.8Si2O25 (A = Rb, Tl). Acta Crystallographica, B40, 180185.CrossRefGoogle Scholar
Martinetto, P., Anne, M., Dooryhée, E., Walter, P. and Tsoucaris, G. (2002) Synthetic hydrocerussite, 2PbCO3·Pb(OH)2, by X-ray powder diffraction, Acta Crystallographica, C58, i82i84.Google Scholar
McLean, W.J. and Anthony, J.W. (1970) The crystal structure of hemihedrite. American Mineralogist, 55, 11031114.Google Scholar
Moore, P.B. (1973) Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. American Mineralogist, 58, 3242.Google Scholar
Mücke, A. (1972) Santanait, ein neues Bleichromat-Mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 10, 455458.Google Scholar
Murashko, M.N., Pekov, I.V., Krivovichev, S.V., Chernyatyeva, A.P., Yapaskurt, V.O., Zadov, A.E. and Zelensky, M.E. (2013) Steklite, KAl(SO4)2: A finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geology of Ore Deposits, 55 [Special Issue: Rossiiskogo Mineralogicheskogo Obshchestva], 594600.Google Scholar
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons, Hoboken, USA.Google Scholar
Nichols, M.C. (1966) The structure of tsumebite. American Mineralogist, 51, 267267.Google Scholar
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. OP, Moscow.Google Scholar
Quareni, S. and de Pieri, R. (1965) A three-dimensional refinement of the structure of crocoite, PbCrO4. Acta Crystallographica, 19, 287289.Google Scholar
Rumsey, M.S., Krivovichev, S.V., Siidra, O.I., Kirk, C.A., Stanley, C.J. and Spratt, J. (2012) Rickturnerite, Pb7O4[Mg(OH)4](OH)Cl3, a complex new lead oxychloride mineral. Mineralogical Magazine, 76, 5973.Google Scholar
Salje, E.K.H. (2015) Modulated minerals as potential ferroic materials. Journal of Physics: Condensed Matter, 27, 305901.Google Scholar
Sarukhanyan, N.L., Iskhakova, L.D. and Trunov, V.K. (1983) Crystal structure of RbEu(SO4)2. Kristallografiya, 28, 452456 [in Russian].Google Scholar
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.Google Scholar
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014 a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. I. Markhininite, TlBi(SO4)2. Mineralogical Magazine, 78, 16871698.Google Scholar
Siidra, O.I., Zenko, D.S., Krivovichev, S.V. (2014 b) Structural complexity of lead silicates: Crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjoite. American Mineralogist, 99, 817823.Google Scholar
Sokolova, E., Hawthorne, F.C., Pautov, L.A. and Agakhanov, A.A. (2010) Byzantievite, Ba5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO4),(SiO4)]4(BO3)9O21[(OH),F]43(H2O)1.5: the crystal chemistry of the only known mineral with the oxyanions (BO3), (SiO4) and (PO4). Mineralogical Magazine, 74, 285308.CrossRefGoogle Scholar
Song, S.Y. and Ok, K.M. (2015) Modulation of framework and centricity: cation size effect in new quaternary selenites, ASc(SeO3)2 (A = Na, K, Rb, and Cs). Inorganic Chemistry, 54, 50325038.Google Scholar
Steele, A.M., Pluth, J.J. and Livingstone, A. (1998) Crystal structure of macphersonite Pb4SO4(CO3)2(OH)2: comparison with leadhillite. Mineralogical Magazine, 62, 451459.Google Scholar
Tissot, R.G., Rodriguez, M.A., Sipola, D.L. and Voigt, J.A. (2001) X-ray powder diffraction study of synthetic palmierite, K2Pb(SO4)2. Powder Diffraction, 16, 9297.Google Scholar
Wildner, M. (1992 a) Isotypism of a selenite with a carbonate: structure of the buetschliite-type compound K2Co(SeO3)2. Acta Crystallographica, C48, 410412.Google Scholar
Wildner, M. (1992 b) Structure of K2Mn(SeO3)2, a further buetschliite-type selenite. Acta Crystallographica, C48, 595.Google Scholar
Williams, S.A. (1972) Embreyite, a New Mineral from Berezov, Siberia. Mineralogical Magazine, 38, 790793.Google Scholar
Williams, S.A. and Anthony, J.W. (1970) Hemihedrite, a new mineral from Arizona. American Mineralogist, 55, 10881102.Google Scholar
Williams, S.A. and Duggan, M. (1980) La macquartite: un nouveau silico-chromate de Tiger, Arizona. Bulletin de Minéralogie, 103, 530532.Google Scholar
Williams, S.A., McLean, W.J. and Anthony, J.W. (1970) A study of phoenicochroite – its structure and properties. American Mineralogist, 55, 784792.Google Scholar
Yang, H., Sano, J.L., Eichler, C., Downs, R.T. and Costin, G. (2007) Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite. Acta Crystallographica, C63, i122i124.Google Scholar
Zubkova, N.V., Pushcharovsky, D.Y., Giester, G., Tillmanns, E., Pekov, I.V. and Kleimenov, D.A. (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineralogy and Petrology, 75, 7988.Google Scholar
Supplementary material: File

Kovrugin et al. supplementary material

Kovrugin et al. supplementary material

Download Kovrugin et al. supplementary material(File)
File 17.9 KB